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Background and Hypothesis:  Neurocognitive and social 
cognitive abilities are important contributors to func-
tional outcomes in schizophrenia spectrum disorders 
(SSDs). An unanswered question of considerable interest 
is whether neurocognitive and social cognitive deficits arise 
from overlapping or distinct white matter impairment(s). 
Study Design:  We sought to fill this gap, by harnessing 
a large sample of individuals from the multi-center 
Social Processes Initiative in the Neurobiology of the 
Schizophrenia(s) (SPINS) dataset, unique in its collection 
of advanced diffusion imaging and an extensive battery of 
cognitive assessments. We applied canonical correlation 
analysis to estimates of white matter microstructure, and 
cognitive performance, across people with and without an 
SSD. Study Results:  Our results established that white 
matter circuitry is dimensionally and strongly related to 
both neurocognition and social cognition, and that micro-
structure of the uncinate fasciculus and the rostral body of 
the corpus callosum may assume a “privileged role” sub-
serving both. Further, we found that participant-wise esti-
mates of white matter microstructure, weighted by cognitive 
performance, were largely consistent with participants’ 
categorical diagnosis, and predictive of (cross-sectional) 
functional outcomes. Conclusions:  The demonstrated 
strength of the relationship between white matter circuitry 
and neurocognition and social cognition underscores the 
potential for using relationships among these variables to 
identify biomarkers of functioning, with potential prog-
nostic and therapeutic implications. 

Key words: schizophrenia spectrum disorders/ 
neurocognition/social cognition/diffusion imaging/white 
matter/Research Domain Criteria

Introduction

Neurocognitive and social cognitive deficits are pervasive 
in schizophrenia spectrum disorders (SSD),1,2 and tightly 
bound to poor functional outcomes.3–5 Several lines of 
evidence have established that neurocognition and so-
cial cognition are behaviorally separable3,6 but an open 
question, relevant for treatment discovery efforts, is if  
neurocognition and social cognition share a common bi-
ological basis.

Some recent research has approached this question 
using functional MRI. For example, our group has 
shown that neurocognitive and social cognitive perfor-
mance in SSD can be predicted by resting-state connec-
tivity in the mirror neuron and mentalizing systems, and 
that connectivity is predictive of functional outcomes.7 
To the best of our knowledge, no study has taken a com-
parable approach in white matter. This is important, be-
cause associations have been shown between white matter 
structure and social cognition, and white matter struc-
ture and neurocognition. However, social cognition and 
neurocognition are correlated8; therefore it is possible 
that they may share similar neural underpinnings, but 
some might be distinct. Finally, diffusion MRI has po-
tential as a tool for clinical translation if  there is interest 
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ultimately in early biological prognostic indicators of so-
cial cognition and neurocognition, as well as targeting for 
therapeutics. In particular, advances in diffusion MRI 
now allow high quality sequence acquisition in short 
periods of time.9

Despite the paucity of studies examining the cogni-
tions in tandem, a large number of neuroimaging investi-
gations have established that disruption of white matter 
is associated with neurocognitive deficits, demonstrating 
that several long-range, deep white matter tracts are re-
liably impaired in SSD.10 A much smaller number of 
investigations of social cognition11–16 appear generally 
suggestive of the same, but small sample sizes, non-tract-
specific white matter estimates,17 and narrow social cog-
nitive assessments18 are limitations. Moreover, all social 
cognitive studies implemented a case-control design and 
univariate statistics, which may together preclude bio-
marker identification.19

The objective of  the present study was to illuminate 
the relationship between neurocognitive and social 
cognitive performance, and estimates of  white matter 
integrity, in individuals with an SSD and healthy con-
trol comparisons (HC). We asked: are there some white 
matter tracts that relate only to neurocognition, others 
only to social cognition, and still others to both? To an-
swer this question, we harnessed data from the Research 
Domain Criteria (RDoC) study “Social Processes 
Initiative in the Neurobiology of  the Schizophrenia(s)” 
(SPINS), which collected data from 2015 to 2019. SPINS 
was designed to identify impairments in neural circuit 
structure giving rise to social cognitive deficits, across 
the continuum of people with and without an SSD. An 
advantage of  the SPINS study is its broad testing of  so-
cial cognition. Administering several independent tasks 
was necessary because, at the initiation of  the SPINS 
study and still today, no standardized battery of  social 
cognition exists, akin to the MATRICS (Measurement 
and Treatment Research to Improve Cognition in 
Schizophrenia) Consensus Cognitive Battery (MCCB) 
for neurocognition.20 Though other studies from our 
group have used the SPINS dataset to investigate the 
factor structure of  social cognition,21 and illuminate 
the relationship between cognitive performance and 
functional activity and connectivity7,22,23 the present in-
vestigation evaluates associations among white matter, 
neurocognition, and social cognition.

We employed multivariate canonical correlation anal-
ysis (CCA)24,25 to reveal the joint structure of  white 
matter fractional anisotropy estimates, and social cog-
nitive and neurocognitive performance scores. CCA 
was an attractive method by which to approach our 
question, because it allows for the identification of 
cognitively-relevant brain features beyond “one-tract-
one-function” associations, and also lends itself  easily 
to dimensional analysis (cf. case-control analysis), in 
keeping with the RDoC paradigm.26 Via exploratory 

analyses, we explored the utility of  CCA model de-
rivatives to illuminate three topical debates in the field; 
namely if  cognition-constrained estimates of  white 
matter microstructure might reveal novel subgroups, 
confirm psychiatric diagnosis, and/or predict cross-sec-
tional functional outcomes.

Methods

Participants

The SPINS study recruited participants across three 
centers: the Center for Addiction and Mental Health 
(Toronto), the Maryland Psychiatric Research Center 
(Maryland), and Zucker Hillside Hospital (New York). 
To allow for non-exact in-sample replication, we derived 
a “discovery” and “validation” sample in accordance with 
the MRI model upon which participants’ imaging data 
were acquired. Our discovery sample comprised n = 135 
(85 SSD) collected on a single 3T GE 750w Discovery 
in Toronto, and our validation sample comprised n = 173 
(93 SSD) collected at all three centers on prospectively 
harmonized 3 T Siemens Prismas.

Eligibility Criteria. Participants with SSDs met DSM-5 
diagnostic criteria for schizophrenia, schizoaffective dis-
order, schizophreniform disorder, delusional disorder, or 
unspecified schizophrenia spectrum and other psychotic 
disorder, assessed using an adapted Structured Clinical 
Interview for DSM (SCID-IV-TR). Individuals with SSD 
were symptomatically stable and had no change in an-
tipsychotic medication or decrement in functioning in 
4 weeks before enrollment. Exclusion criteria included 
a history of head trauma resulting in unconsciousness, 
intellectual disability, substance use disorder within 
the past 3 months, debilitating or unstable medical ill-
ness, neurological disease, and MR contraindications. 
Additionally, HCs did not ever have a DSM-IV Axis I 
disorder, excepting adjustment disorder, phobic dis-
order, past major depressive disorder (over 2 years prior; 
presently unmedicated), or a first-degree relative with a 
primary psychotic disorder. Participants ranged in age 
between 18 and 59. The protocol was approved by the 
respective research ethics boards and institutional review 
boards, and all participants provided written informed 
consent. All research was conducted in accordance with 
the Declaration of Helsinki.

Participant Assessment

Neurocognitive Measures. Neurocognition was evaluated 
using the MATRICS MCCB,20 which provides domain 
scores for processing speed, reasoning and problem-
solving, attention/vigilance, working memory, and verbal 
and visual learning. We omitted the social cognition do-
main, given our social cognitive battery.27
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Social Cognitive Measures. We tested social cognition 
via five tasks: the Penn Emotion Recognition Test (ER-
40) which tests facial emotion recognition28; the Reading 
the Mind in the Eyes Task (RMET) which tests mental 
state inference from the eyes29; the Empathic Accuracy 
(EA) task which involves evaluation of positive or neg-
ative emotions via video vignettes30,31; the Relationships 
Across Domains (RAD) task which requires under-
standing of interpersonal relations32 and The Awareness 
of Social Inference Test-Revised (TASIT) which as-
sesses emotion and social inference via video vignettes.33 
Validation studies have found these tasks to be fit for clin-
ical trial use,30,34 with the exception of the RAD, which is 
a test of social perception with adequate psychometric 
properties.

Other Measures. Psychiatric symptoms were evaluated 
in the SSD sample using the Brief  Psychiatric Rating Scale 
(BPRS)35 and the Scale for the Assessment of Negative 
Symptoms (SANS).36 In both SSD and HC groups, the 
Birchwood Social Functioning Scale (BSFS)37 evaluated 
social functioning, and the Cumulative Illness Rating 
Scale-Geriatric (CIRS-G)38 evaluated chronic illness 
burden. In the SSD group only, we assessed functioning 
via the Quality of Life Scale (QLS),39 extra-pyramidal 
signs via the Simpson-Angus Scale (SAS),40 and chlor-
promazine equivalents (CPZE)41 for antipsychotics.

Imaging Procedures

Diffusion Imaging: Acquisition and Preprocessing. We 
acquired a high-angular axial EPI dual spin echo se-
quence diffusion scan.42 Parameters were prospectively 
harmonized across scanners within the limits of  hard-
ware, as follows: 60 gradient directions, b = 1000, 5 
b = 0 images (two scanners 6 b = 0 s), TR = 8800 ms 
(one scanner TR = 17700 ms), TE = 85 ms, FOV = 256 
mm; in-plane matrix 128 × 128, and 2.0 mm isotropic 
voxels. All images were pre-processed identically: (1) 
brain masking via two-step agreement in AFNI (BET) 
and MRtrix3 (dwi2mask), (2) motion correction for 
inter- and intra-volume movement via FSL (eddy), and 
(3) susceptibility distortion correction via BrainSuite 
(BDP).

White Matter Analysis. We fit a tensor and reconstructed 
white matter tracts via deterministic unscented Kalman 
filter tractography,43 using the “WhiteMatterAnalysis” 
algorithm available in 3D Slicer (https://github.com/
SlicerDMRI). We clustered fibers via supervised 
groupwise registration44 to the ORG (O’Donnell Research 
Group) atlas.45,46 We report fractional anisotropy (FA), as 
it is the most commonly-reported diffusion index,47 and 
reflects the most disruption in both illness and cogni-
tive impairment.48 We confirmed that no scanner effect 
was evident in FA values across the three scanners in the 

validation sample. For imaging quality control proced-
ures, see Supplementary material S2.

Statistical Procedures

Preprocessing. For all variables of primary interest 
(ie, estimates of neurocognitive and social cognitive 
performance, and white matter microstructure), we 
(1) removed outliers via the adjusted boxplot method 
(< 3% of values),49 (2) imputed removed and missing 
data ( < 0.05% of values) with chained equations,50 (3) 
transformed skewed distributions via the Yeo-Johnson 
power transformation (all social cognition variables, 
all negatively skewed),51 and (4) ensured that no vari-
ables were multicollinear (all in-set VIF < 6).52 Lastly, 
we residualized non-meaningful sources of variation on 
white matter microstructure; namely age, sex, and anti-
psychotic medication load as estimated by CPZE.53–55

Canonical Correlation Analysis. We employed CCA24 to 
model the “doubly multivariate” associations of white 
matter microstructure (X set), and neurocognition and so-
cial cognition (Y set). Our X set comprised FA estimates 
in 19 deep white matter tracts, selected on the basis of a 
previously demonstrated connection to neurocognition 
and/or social cognition in existing literature, and reliable 
tract segmentation (Supplementary material S1). Our Y 
set comprised the previously described six MATRICS 
MCCB domain scores, and 10 social cognition scores: 
total scores from the ER-40, RMET, EA, and RAD, and 
subscale scores from the TASIT (TASIT 1; TASIT 2: sin-
cere; TASIT 2: paradoxical sarcasm; TASIT 2: simple sar-
casm; TASIT 3: lies; TASIT 3: sarcasm). Though 6 of our 
social cognition scores derive from the same test, we have 
previously shown each to capture unique variance.21 Thus, 
our total of 35 features across sets meets the recommended 
5:1 observation-to-feature ratio in our n = 173 replication 
sample.56 It is not considered inherently problematic that 
our Y set contains features of different types (namely do-
main scores, total scores, and subscale scores).25

CCA employs an unsupervised matrix decomposi-
tion technique to re-express X and Y features as lower-
dimensional “canonical variates”, Xʹ and Yʹ, that are 
maximally correlated under the constraint of orthogo-
nality. CCA uses a nested procedure to test for signifi-
cant associations between variates, and as such, it does 
not require correction for multiple comparisons.57 CCA’s 
primary outcome metric is a canonical correlation value 
(Rc), which estimates shared structure across variates. Of 
interest to us, CCA provides interpretable estimates of 
feature importance via structure coefficients (rs), which 
express the univariate correlation between a given feature 
and its canonical variate. Because estimates can prove 
unstable across samples,58–60 we interpreted features sur-
passing the conservative threshold of |rs| ≥ 0.45 in both the 
discovery and validation samples.61
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Exploratory Analyses. An additional output of CCA are 
participant-wise “variate scores”, for each variate, and 
each set, which weight observed values by the model’s 
coefficients. Thus, variate scores have the interesting 
property that they are constrained to lie along axes of 
variance maximally related to the other set.62 In our case, 
Xʹ variate scores capture participant-wise FA estimates 
adjusted for cognitive performance, which we refer to 
subsequently as “cognition-constrained white matter”. 
In three exploratory analyses, we probed the utility of 
cognition-constrained white matter scores from signif-
icant variates to (1) illuminate natural subgroups (via 
clustering), (2) confirm “ground truth” diagnostic labels 
(via classification), and (3) predict social functioning (via 
regression). See Supplementary materail S3 for a com-
plete description of exploratory methods.

Results

Participant Characteristics

Table 1 summarizes participant demographic, clinical, 
neurocognitive, and social cognitive characteristics. FA 
values in the discovery and validation samples are avail-
able in Supplementary material S4. We observed small 
negative to large positive bivariate correlations within 
and between white matter and cognition estimates, shown 
in Supplementary material S5.

CCA Analyses: White Matter–Cognition Relationships

The CCA analyses were conducted identically in the dis-
covery and validation samples. The full models showed 
high canonical correlation values [RcDISCOVERY = 0.71; 
RcVALIDATION = 0.72] (figure 1A). Permutation against em-
pirical null distributions found both models to be signif-
icant: [pDISCOVERY < 0.005; pVALIDATION ≤ 0.001] (figure 1B), 
as was parametric testing via the asymptotic Hotelling-
Lawley Trace statistic [pDISCOVERY = 0.027; pVALIDATION ≤ 
0.001], though the more commonly Wilks’ lambda sta-
tistic was mixed [pDISCOVERY = 0.065, pVALIDATION ≤ 0.001]. 
In both samples, nested hierarchical significance testing 
revealed only the first canonical variate pair (CV1) of 16 
to be significant. CV1 explained a substantial portion of 
variance (Rc2

DISCOVERY = 50%, Rc2
VALIDATION = 23%) and 

redundancy (RdDISCOVERY = 52%, RdVALIDATION = 22%). 
Sensitivity analyses in which we systematically altered 
aspects of our statistical preprocessing regime (ie, out-
lier removal, imputation, and/or normality correction) 
did not change the nature of the global CCA results, and 
jacknife resampling (ie, iterative participant removal) 
showed global results to be stable. Residual analysis of 
participants’ scores on CV1 showed an indistinguishable 
pattern across SSD and HC.

CV1 showed several features bearing canonical loadings 
beyond our chosen “importance” threshold of |rs| ≥ 0.45. 
Comparison of important features in the discovery and 

validation samples showed similarity in polarity and 
magnitude, though differences were evident in precise 
value and rank (figure 1C). In both samples, the body of 
the corpus callosum (CC3) and the right uncinate fascic-
ulus (UF) contributed highly, as did the MCCB speed of 
processing, attention and vigilance, verbal learning, and 
visual learning (neurocognition), and TASIT 3 sarcasm 
(social cognition).

Exploratory Analyses

Next, we conducted three exploratory analyses using 
participant-wise cognition-constrained white matter 
scores from CV1. Because these values are standardized, 
we combined them across the discovery and validation 
samples, and derived a training (n = 200) and testing 
(n = 108) sample.

Cognition-constrained White Matter and Clustering. First, 
we evaluated the potential of cognition-constrained white 
matter to reveal participant subgroups, by clustering the 
training set via Ward’s complete-linkage method. We 
found a five-cluster solution was optimal (figure 2A), with 
a Calinski-Harabasz index (CHI) of 595.71 (figure 2B). 
However, permutation testing showed this CHI was likely 
to occur under the null hypothesis of no clusters em-
bedded in the data (P = .105) (figure 2C).62,63

Cognition-Constrained White Matter and Agreement With 
Case/Control Designation. Second, we applied receiver 
operating characteristic (ROC) curve analysis to deter-
mine if  cognition-constrained white matter might reveal 
a clear diagnostic cut-point, separating SSD and HC. 
The ROC curve in the training set showed excellent re-
covery (AUC = 0.941 [0.917–0.965]) (figure 2D), which 
was highly unlikely to arise from chance (D = 10.36, 
P < .001). The Youden index identified an optimal cut-
point at Xʹ1 = −0.237 (AUC = 0.939 [0.908–0.970], 
balanced accuracy = 88.5%), which showed excellent pre-
dictive ability when applied to the held-out test sample 
(AUC = 0.948 [0.903–0.982], balanced accuracy = 87%) 
(figure 2E). Misclassifications of participants with SSD 
and HCs were equally likely (McNemar’s test), and mis-
classified participants were not differentiated by age or 
sex, nor symptom severity (SSD only). Comparison of 
this model to alternatives taking each white matter fea-
ture uninfluenced by cognition as a predictor, as well as 
their combined one-dimensional representation (PCA), 
found that only the cognition-constrained classifier 
achieved “exceptional” performance.

Cognition-Constrained White Matter and Prediction 
of Real-world Functioning. Lastly, we evaluated if  
cognition-constrained white matter might predict social 
functioning, as measured by the BSFS,37 using 5-fold 
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5-repeat cross-validated linear regression. In the test 
set, cognition-constrained white matter explained 25.3% 
in BSFS variation (adjusted R2 = 0.253), with predic-
tion error of RMSE = 25.082 in BSFS units (maxmin 
normalized RMSE = 0.169) (figure 2F). A non-nested 
likelihood ratio test comparing this model to an alter-
native leveraging all white matter features uninfluenced 
by cognition as predictors found the models were distin-
guishable (P = .004), and that the alternative model un-
influenced by cognition possessed better goodness-of-fit 
(P < .001).

Discussion

Understanding structure-cognition relationships is an 
important focus of schizophrenia research and cognitive 
neuroscience more broadly. Here, we sought to under-
stand if  the microstructural integrity of shared (or dis-
tinct) white matter tracts is associated with neurocognitive 
and social cognitive performance. Multivariate CCA of 
FA estimates in 19 tracts (X set), and 6 neurocognitive 
and 10 social cognitive performance scores (Y set) re-
vealed a significant structure-cognition association, 
stable in the face of participant- and feature-wise pertur-
bation. Subsequent examination of model coefficients (rs 
values) revealed that neurocognition (MCCB processing 
speed, attention and vigilance, verbal learning, and visual 
learning) and social cognition (TASIT 3 sarcasm) were 
subserved by common tracts, namely the body of corpus 
callosum and right UF. We did not observe evidence of 
distinct circuitry relating to neurocognition vs social cog-
nition separately. The finding that neurocognitive and so-
cial cognitive performance relies on partially overlapping 
circuitry complements functional neuroimaging evidence 
of common cognitive processing strategies in healthy in-
dividuals64–67 and the SPINS sample.7,22,23

Though the CCA illuminated shared cognitive cir-
cuitry, it is notable that more neurocognitive (4) than so-
cial cognitive (1) features shared this mapping. This may 
suggest that neurocognition is more broadly reliant than 
social cognition on white matter integrity. However, it 
may also reflect that the employed social cognitive tasks 
lack sensitivity to neurobiology; after all, none were de-
vised with consideration of how (or if) they might map to 
brain circuits. It is plausible that different social cognitive 
tasks, or broader dimensions/domains, might prove more 
proximal to white matter abnormalities. An alternative 
explanation is that the TASIT 3 sarcasm may be “more 
neurocognitive” than other social cognition tasks.68 
Resolving questions such as these will be greatly aided by 
a consensus social cognitive battery, akin to the MCCB.69

The CCA model highlighted high contributions from the 
body of corpus callosum and right UF, providing motor 
interhemispheric and orbito-frontal/medial prefrontal-
amygdalar connections, respectively. Alterations to the 
corpus callosum are among the most robust findings in 
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Fig. 1. White matter–cognition relationships. (A) Full model canonical correlations (Rc) and participant-wise scores on the first 
canonical variate (CV1), in the discovery (left) and replication (right) samples. (B) The observed canonical correlation values (dashed 
lines) are unlikely to arise from chance. (C) Several X and Y set variables were important to the CCA resolution as established by 
the conversative threshold of |rs| ≥ 0.45 (dashed lines). Estimates were grossly similar in magnitude and polarity across samples. Note: 
Rc, canonical correlation; CV1, first canonical variate; rs, standardized structure coefficient (canonical loading. For X and Y set 
abbreviations in (C), consult paper text.
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schizophrenia70 and have been related to the cognitions. 
For instance, one recent study found that integrity of 
the body of the corpus showed the strongest association 
to working memory and processing speed (the only two 
neurocognitive variables analyzed),71 and another found 
that integrity of the body of the corpus was most related 
to social cognition, albeit only assessed via one task be-
lieved to measure social perception.72 Our results corrob-
orate and extend these findings by demonstrating the role 
of the body of the corpus in the same participants, across 
a diverse battery of cognitive tasks.

The UF is also known to be microstructurally dis-
turbed in schizophrenia,73 but only a small body of em-
pirical work has explored its relation to the cognitions. 
One study found that integrity of the bilateral uncinate 
was positively correlated with several neurocognitive do-
mains, as well as emotion processing.74 Another study 
found that integrity of the right uncinate was associated 
with social perception, but the correlation was negative.75 
Our results underscore that the uncinate is important to 
the cognitions, though further research is needed to un-
derstand an apparent disagreement in lateralization,76 as 
well as possible specialization of subcomponents.77

Latent structure-cognition associations were statis-
tically indistinguishable between SSD and HC parti-
cipants. However, this does not prove that there are no 
unique structural marker(s) of impaired cognition; we did 
not test for this, and others have found some evidence in 
favor of it in schizophrenia, for example,71 This result ex-
tends prior work by our group, which demonstrated that 
the statistical structure of cognition alone is invariant 
in SSD and HC.21 Indistinguishable structure-cognition 
associations provide post hoc endorsement of a dimen-
sional relationship across SSD and HC, and extends to 
structure prior evidence from the SPINS study that mul-
tivariate function-cognition links may be better described 
as deficit-specific, as opposed to diagnosis-specific.7,22,23

In exploratory analyses, we leveraged CCA model out-
puts (ie, Xʹ1 scores representing “cognition-constrained 
white matter”) to perform clustering, classification, and 
prediction analyses. Our clustering analysis failed to illu-
minate natural subgroups, that is, “biotypes”. This may 

Fig. 2. Exploratory results. (A–C) clustering analysis; (D, 
E) classification analysis, (F) prediction analysis. (A) The 
dendrogram in the training sample. The five-cluster solution 
is highlighted (dashed boxes). (B) The five-cluster solution 
demonstrated the highest Calinski-Harabasz index (black dot). 

(C) Permutation testing showed the observed CHI (dashed 
line) was not distinguishable from a null distribution (D). A 
Receiver Operating Characteristic curve analysis in the training 
sample showed excellent recovery, and the Youden index (J) 
identified an optimal cut-point (black dot). (E) In both the 
training and testing samples, the optimal cut-point showed 
excellent predictive ability, in both diagnostic groups (correct 
classifications in white, misclassifications in gray). (F) Xʹ1 scores in 
the training set were predictive of social functioning. Note: CHI, 
Calinski-Harabasz index; J, Youden index; Xʹ1, participant-wise 
cognition-constrained white matter scores on the first canonical 
variate; AUC, area-under-the-curve; HC, healthy control; SSD, 
schizophrenia spectrum disorder; BSFS, Birchwood Social 
Functioning Scale; RMSE, root-mean-square-error.
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be the consequence of our a priori decision to limit our 
search within scores derived from significant canonical 
variate(s): we thus searched within a one-dimensional 
subspace which is likely to capture something of a global 
brain-behavior relationship. Our classification analysis 
found that cognition-constrained white matter served 
as an excellent diagnostic biomarker (balanced accuracy 
in test set = 87%), with confusion mostly circumscribed 
to a fuzzy “tipping point”.78 This performance was fa-
vorable among the 10 prior studies that have sought to 
distinguish individuals with schizophrenia from HCs 
on the basis of white matter features alone, with accur-
acies reported from 62 to 94%.79–88 Finally, our regression 
analysis showed that cognition-constrained white matter 
predicted cross-sectional social functioning scores, 
though an alternative model utilizing white matter alone 
showed superior performance. This may reflect the fact 
that cognition-constrained white matter is constrained by 
neurocognitive performance, which we have previously 
found to be less related to social functioning than social 
cognitive performance.21 Despite these mixed exploratory 
results, we view weighted structure-cognition scores to be 
of high utility to various clustering, classification, and 
prediction applications. In particular, our finding that 
cognition-constrained white matter accurately predicts 
diagnosis could be useful in advancing efforts into the 
prodrome or prior, given that subtle differences in both 
white matter89 and cognitive performance90,91 are evident 
before frank psychosis onset.

Our study has several limitations. Pertaining to the 
SPINS sample, participants were heterogeneous across 
many domains, including those that may influence 
neurocognition, social cognition, and white matter mi-
crostructure, including age,92,93 duration of illness,94–96 and 
antipsychotic exposure.97,98 Further, participants with 
SSD were disproportionately male.99,100 We attempted to 
mitigate these limitations by adjusting primary outcomes 
for age, sex, and CPZE.A second set of limitations per-
tain to our use of CCA. CCA is “data hungry” in that 
it requires a high observation-to-feature ratio to avoid 
overfitting (ie, identifying spurious associations that 
fail to generalize). To achieve an adequate observation-
to-feature ratio of approximately 5:156 in our validation 
sample, we opted to limit our X set to 19 tracts. This fea-
ture selection undercuts the full data-driven power of 
CCA. It is possible that other tracts, perhaps the cere-
bellar (peduncles) and projection tracts, may prove rele-
vant to cognition in schizophrenia, based on analogous 
findings in healthy individuals.101,102 A related limitation 
is that estimates of feature importance may be especially 
unstable across samples,58–60 with a recent suggestion 
that this instability only resolves with an observation-to-
feature ratio of 50:1,103 which is 10-fold that of our and 
most other imaging-cognition studies. We attempted to 
mitigate this worry by imposing a high threshold for inter-
pretation (canonical loadings |rs| ≥ 0.45),61 and interpreting 

only those features surpassing this high threshold in our 
two samples.

Caveats notwithstanding, this study confirms that 
white matter microstructure captures an important la-
tent component of  neurocognitive and social cogni-
tive performance, and provides novel evidence that 
neurocognitive and social cognitive performance are sub-
served by common white matter circuitry. Our results are 
strengthened by our comprehensive cognitive batteries, 
use of  a multivariate approach, and in-sample replica-
tion. Future work should probe the effect of  targeting 
the body of  the corpus and the right UF: improved 
microstructural integrity might bring about enhanced 
cognitive ability and a corresponding improvement to 
functional outcomes in SSD.
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SUPPLEMENT S2: Imaging quality control procedures 

 

The SPINS study implemented several quality control procedures. To monitor and mitigate unwanted 

heterogeneity over five years of data collection, we used an agar phantom that allowed tracking of 

scanner drift (115), and annually scanned ‘travelling human phantoms’, allowing for cross-centre and 

longitudinal comparison of the same individuals as a proxy for inter- and intra-site scanner related 

impacts (116). The SPINS study also conducted centralized training for research assistants and 

implemented standard operating procedures across its three sites, that allowed for high quality diffusion 

images to be acquired from most study participants. In particular, participants were trained on how to 

minimise head motion, especially important given that the diffusion images were the last to be acquired. 

An in-scanner camera was employed to monitor participant movement during scans, and corrupted scans 

were repeated as possible. 

 

Prior to analysis, all scans were checked for sufficient quality by experienced research staff, making use 

of an in-house quality control dashboard (https://github.com/TIGRLab/dashboard) that reviews both 

quantitative (e.g., framewise displacement, signal-to-noise) and qualitative metrics (e.g., detecting 

ghosting or blurring by eye). As a rule, we attempted to manually correct issues prior to pre-processing, 

as exclusion of ‘noisy’ data has been demonstrated to spuriously inflate group FA differences between 

individuals with schizophrenia and healthy controls (117). Ultimately, we removed data from one 

participant (SSD) on the basis of their acquired diffusion scan. 

 

We also performed quality control of outputs from the whitematteranalysis pipeline. Specifically, we 

performed qualitative quality control at three points: (i) initial tractography, (ii) registration to the ORG 

atlas, and (iii) creation of the k=41 final tracts, on the the basis of macroscopic features (e.g. trajectory 

shape and volume). We removed data from four participants (all HC) on this basis. Notably, we achieved 

perfect inter-rater agreement on the plausibility of the trajectories (pass/fail) of final tracts in a subset of 

twenty participants, including two participants who were excluded (19 tracts x 20 participants = 380 

comparisons). Quantitatively, we reviewed scalar values derived from the tracts for evidence of abnormal 

microstructural properties (i.e., outlying FA/MD/AD/RD values) and tract-level characteristics (e.g. outlying 

streamline count or length). We removed data from no participants on this basis. 

  

https://github.com/TIGRLab/dashboard
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SUPPLEMENT S3: Exploratory methods 

 

In three exploratory analyses, we probed the utility of providing X’1 variate scores to a clustering, cutpoint, 

and prediction analysis, in the spirit of data-driven nosology and precision modelling gaining traction in 

the literature. Because these scores are standardized (Z-scores), we combined scores computed 

separately within the discovery and validation sets, affording us a larger sample (n=308). We then split 

the combined discovery and validation samples into training (n=200, 117 SSD) and testing (n=108, 63 

SSD) sets. This split is roughly equal to a 2:1 training:testing ratio (64.94%), and the size of the training 

set surpassed a widely-employed stability benchmark established for models containing neuroimaging 

features in schizophrenia (i.e., predictive models using structural imaging features in schizophrenia 

patients are not stable in sample sizes under n=130) (118). To avoid bias, the entirety of the three 

respective procedures is embedded within the validation framework (119). 

Clustering analysis 

The clustering analysis sought to determine if X’1 scores might reveal innate brain-behaviour biotypes. 

We chose to perform hierarchical clustering, in part because hierarchical clustering can accommodate 

one-dimensional (only X’1 is significant), whereas other algorithms (e.g., k-NN) require multidimensional 

space. First, we hierarchically clustered X’1 scores using Ward’s complete-linkage method (120), which 

we established to provide superior clustering structure between comparable agglomerative methods via 

highest coefficient (>.999) (121). Ward’s method establishes clusters that minimize dispersion in 

Euclidean space, and has been usefully applied in the SPINS dataset(58,85). We set seven clusters as 

an arbitrary upper-limit (consistent with one cluster for each of the five SCID-IV-TR schizophrenia 

subtypes in our sample, one cluster for healthy controls, and one additional degree of freedom) and then 

determined the optimal number of clusters in this range via the Calinski-Harabasz index (CH, also known 

as the variance ratio criterion), which represents the ratio of between-cluster dispersion and inter-cluster 

dispersion (thus, a higher CH value indicates higher performance) (122). We tested if the observed CHi 

index value was different from that derived from a null distribution of two-dimensional Gaussians with 

similar characteristics to Xi (mean, covariance, number of observations), but that embeds no underlying 

clusters by definition. We reasoned that indistinguishable CH indices would indicate our data likewise did 

not embed any true clusters(57). On the other hand, if an observed CHi index surpassed a significant 

proportion of the null distribution, we could be confident in our identification of biologically distinct 

subgroups, and proceed to interrogate their meaningfulness in relation to psychopathological 

characteristics. We used the `cluster` (123) and `NbClust` (124) R packages for these analyses. 

Cutpoint analysis 

The cutpoint analysis aimed to determine if the continuous distribution of X’1 scores might accurately 

dichotomize participants in accordance with their “ground-truth” diagnostic label. For this task, we split the 

combined discovery and validation samples (n=308) into training (n=200, 117 SSD) and testing (n=108, 

63 SSD) sets, as for the prior clustering analysis. We stratified both samples by diagnostic group, to 

ensure an approximately equivalent ratio of participants with and without an SSD in the training and 

testing sets (~58.5%). Note that though the counts of those with and without an SSD 

 differ within each set (reflective of the SPINS recruitment strategy preferential to participants with an 

SSD), this differences falls far short of “class imbalance”, which refers to the case when one class is 

substantially underrepresented in the dataset(125). 

  

To explore the diagnostic accuracy of  X’1 scores, we employed ROC (receiver operating characteristic) 

curve analysis(126), with  X’1 scores as the independent variable, and binary diagnostic label (i.e., SSD, 

HC) as the dependent variable. We fit a ROC curve in the training set, as well as a permuted training set, 

obtained by randomly shuffling known diagnostic labels (perm=1000). For both models, we calculated the 

AUC (area under the ROC curve) c-statistic, which provides a synthetic goodness-of-fit measure varying 

from 0 to 1 (AUC: 0.9–1.0=excellent; 0.8–0.9=good; 0.7–0.8=fair; 0.6–0.7=poor; 0.5–0.6=fail) (127), here 

indicating the extent to which Xi scores separate participants with and without SSD. We statistically 
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compared the AUC values from the training and permuted models via Chi-square, testing the null 

hypothesis that the vertical distance between their respective cumulative distribution functions did not 

differ from chance. This statistical test is essential before identifying a cutpoint: indeed, cutpoint analysis 

will identify a cutpoint in distributions with no diagnostic accuracy, just as clustering analyses will identify 

clusters in continuous data. The absence of this comparison has been cited as a potential cause of the 

poor performance and acceptance of purported biological cutpoints in clinical settings (128). 

  

Contingent upon the diagnostic ability of Xi scores proving above chance, we then determined the 

‘optimal’ location of a diagnostic cutpoint along the ROC curve. There exist several mathematical 

strategies to determine an ‘optimal’ cutpoint, that differ primarily in how they weigh the cost of 

misclassification(129). We opted to employ the Youden index (J) (130), which defines the optimal cutpoint 

as the maximum of the sum of sensitivity and specificity -1, with sensitivity and specificity afforded equal 

weight, and has been shown to derive the highest sensitivity estimates in cases when the ‘non-diseased’ 

population (here, HC) demonstrates high variability (131). Youden index values range from 0 to 1 (0.9-

1.0=exceptional; 0.8–0.9=excellent; 0.7–0.8=acceptable; <0.7=no discrimination), and can be graphically 

represented as the longest vertical distance between the ROC curve and its 45 degree line of 

chance(132). We evaluated the classification performance of the derived Youden index, in both the 

training and testing sets, via several commonly-employed performance metrics (AUC, accuracy, 

sensitivity, specificity). We ensured that misclassifications of participants with SSD and HCs were equally 

likely, as determined by McNemar’s test for marginal homogeneity. We analysed if the X’1 scores 

exhibited qualitatively better classification performance (higher AUC values) than any of the 19 white 

matter variables informing the original CCA, as well as their one-dimensional representation achieved via 

PCA (95), by re-running the ROC analysis in the training set. We use the `rPROC` (133), `cutpointr` 

(134), and `caret` (135) R packages for these analyses. 

Prediction analysis 

Lastly, we sought to determine if X’1 scores could predict social functioning, as measured by the 

Birchwood Social Functioning Scale (BSFS) (35). We chose to employ simple linear regression analysis 

rather than a more complex machine learning method, as the former retain interpretability and thus allow 

explanatory insights at the cost of minimally diminished performance (136). Clinically relevant prognosis 

and therapeutic discovery likely requires an adequate explanation of cause (137). BSFS total scores 

showed sufficient representation in the tails of the distribution, so we were able to treat functional 

outcome as a continuous index, which remains uncommon in the prognostic literature and is a 

consequence of assessing outcome across the healthy-to-schizophrenia spectrum (should this criterion 

have not been met, a classification model would be preferred to regression (138)). We employed 5-fold 5-

repeat (internal) cross validation to determine adjusted R2 goodness-of-fit (representing the proportion of 

variation in social functioning that is predicted by the model; higher is better) as well as RMSE prediction 

error (root mean squared error, representing the average prediction error made in predicting social 

functioning; lower is better). We opted to compare the goodness-of-fit of our model (X’1 scores as the 

predictor variable) to an alternative model, using all 19 of the white matter FA features as predictor 

variables, to determine any ‘value-added’ by our cognition-constrained brain features. Though models 

with few predictors typically underfit the data and thus demonstrate lower variance explained than models 

with more predictors, additional predictors improve performance only if they provide meaningful 

information as opposed to noise (139). For this task, we implemented a likelihood ratio test modified for 

non-nested data (140). We used the `caret` (135) and `poweRlaw` (141) packages for these analyses. 
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SUPPLEMENT S4: Participant white matter fractional anisotropy estimates 

 

                  

  
Discovery sample 

(GE Discovery) 
Validation sample 

(Siemens Prismas) 
Sample 

comparison 

  

SSD-HC SSD HC   SSD-HC SSD HC     

n=135 n=89 n=46   n=173 n=91 n=82     

mean 

(SD) 
mean 

(SD) 
mean 

(SD) 

p-value 

adj.† 
mean 

(SD) 
mean 

(SD) 
mean 

(SD) 

p-value 

adj.† 

p-value  

adj. ‡ 

Fractional anisotropy                   

AF left 
0.60 

(0.02) 
0.60 

(0.03) 
0.61 

(0.02) 1.000 
0.53 

(0.04) 
0.52 

(0.04) 
0.53 

(0.04) 0.274 0.000 

AF right 
0.57 

(0.02) 
0.57 

(0.02) 
0.57 

(0.03) 1.000 
0.52 

(0.04) 
0.51 

(0.04) 
0.53 

(0.03) 0.041 0.000 

CB left 
0.50 

(0.03) 
0.50 

(0.03) 
0.50 

(0.02) 1.000 
0.44 

(0.03) 
0.43 

(0.03) 
0.44 

(0.03) 0.102 0.000 

CB right 
0.49 

(0.03) 
0.48 

(0.03) 
0.49 

(0.03) 1.000 
0.43 

(0.03) 
0.42 

(0.03) 
0.43 

(0.03) 0.044 0.000 

ILF left 
0.51 

(0.02) 
0.51 

(0.02) 
0.52 

(0.02) 1.000 
0.47 

(0.03) 
0.46 

(0.03) 
0.48 

(0.03) 0.008 0.000 

ILF right 
0.51 

(0.02) 
0.51 

(0.02) 
0.52 

(0.02) 1.000 
0.47 

(0.03) 
0.46 

(0.03) 
0.48 

(0.03) 0.004 0.000 

IOFF left 
0.63 

(0.03) 
0.63 

(0.02) 
0.63 

(0.03) 1.000 
0.54 

(0.04) 
0.53 

(0.04) 
0.55 

(0.04) 0.015 0.000 

IOFF right 
0.63 

(0.02) 
0.62 

(0.02) 
0.63 

(0.02) 1.000 
0.55 

(0.04) 
0.54 

(0.04) 
0.55 

(0.03) 0.021 0.000 

TF left 
0.49 

(0.01) 
0.49 

(0.01) 
0.50 

(0.01) 1.000 
0.46 

(0.02) 
0.45 

(0.02) 
0.46 

(0.02) 0.158 0.000 

TF right 
0.48 

(0.01) 
0.48 

(0.01) 
0.49 

(0.01) 0.720 
0.46 

(0.02) 
0.46 

(0.02) 
0.46 

(0.02) 0.111 0.000 

UF left 
0.48 

(0.03) 
0.49 

(0.03) 
0.48 

(0.03) 1.000 
0.43 

(0.03) 
0.43 

(0.03) 
0.44 

(0.03) 1.000 0.000 

UF right 
0.46 

(0.03) 
0.46 

(0.03) 
0.46 

(0.03) 1.000 
0.44 

(0.03) 
0.44 

(0.03) 
0.44 

(0.03) 1.000 0.000 

CC1 (rostrum) 
0.51 

(0.03) 
0.51 

(0.03) 
0.51 

(0.02) 1.000 
0.47 

(0.03) 
0.46 

(0.03) 
0.48 

(0.02) 0.075 0.000 

CC2 (genu) 
0.57 

(0.02) 
0.57 

(0.02) 
0.57 

(0.02) 1.000 
0.53 

(0.03) 
0.53 

(0.03) 
0.54 

(0.02) 0.007 0.000 

CC3 (rostral body) 
0.59 

(0.02) 
0.59 

(0.02) 
0.60 

(0.02) 0.534 
0.55 

(0.03) 
0.55 

(0.03) 
0.56 

(0.02) 0.025 0.000 

CC4 (anterior midbody) 
0.60 

(0.02) 
0.60 

(0.02) 
0.60 

(0.01) 0.593 
0.57 

(0.03) 
0.56 

(0.03) 
0.57 

(0.02) 0.063 0.000 
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CC5 (posterior midbody) 
0.60 

(0.02) 
0.60 

(0.02) 
0.60 

(0.02) 1.000 
0.57 

(0.03) 
0.57 

(0.03) 
0.58 

(0.02) 0.393 0.000 

CC6 (isthmus) 
0.61 

(0.01) 
0.61 

(0.01) 
0.62 

(0.01) 0.408 
0.57 

(0.02) 
0.57 

(0.02) 
0.58 

(0.02) 0.037 0.000 

CC7 (splenium) 
0.61 

(0.02) 
0.61 

(0.02) 
0.62 

(0.02) 1.000 
0.58 

(0.02) 
0.58 

(0.02) 
0.59 

(0.02) 0.047 0.000 

 

All p-values are derived from a t-test. The three `p-value adj` columns have been Bonferroni corrected for 

multiple comparisons. † The p-values within the Discovery sample and Validation sample "blocks" 

respectively compare the SSD and HC scores (providing a comparison of participant groups within 

sample), and the respective SSD-HC columns describe the sample's combined participants' mean and 

standard deviation. ‡ The p-values in the Sample comparison block compare the combined SSD-HC 

means and standard deviations between the Discovery and Validation samples (providing a comparison 

across samples). 

 

Note: AF, arcuate fasciculus; CB, cingulum bundle; CC, corpus callosum; HC, healthy control; ILF, 

inferior longitudinal fasciculus; IOFF, inferior occipital-frontal fasciculus; SSD, schizophrenia spectrum 

disorder; SSD-HC, schizophrenia-to-healthy control spectrum; TF, ; UF, uncinate fasciculus.  
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SUPPLEMENT S5: Bivariate correlations of all CCA features 

 

 
 

Bivariate correlations between all variables are shown in the (A) discovery sample and (B) replication 

sample. Correlation strength is denoted by colour and size in the upper triangle, and numerically in the 

lower triangle. Correlations were highest within the X set (mean=.52, min=-.26, max=.85), followed my 

within the Y set (mean=.35, min=-.12, max=.72), and lastly between sets (mean=.06, min=-.35, max=.37). 


