Schizophrenia Bulletin
https://doi.org/10.1093/schbul/sbac216

Multivariate Associations Among White Matter, Neurocognition, and Social
Cognition Across Individuals With Schizophrenia Spectrum Disorders and Healthy

Controls

Navona Calarco'°, Lindsay D. Oliver!, Michael Joseph', Colin Hawco'?, Erin W. Dickie!, Pamela DeRosse**5,
James M. Gold®, George Foussias'?, Miklos Argyelan®**5, Anil K. Malhotra**5, Robert W. Buchanan®, and

Aristotle N. Voineskos™!>“ for the SPINS Group

!Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; *Department of
Psychiatry, University of Toronto, Toronto, ON, Canada; 3Division of Psychiatry Research, Division of Northwell Health, The Zucker
Hillside Hospital, Glen Oaks, NY, USA; “Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/
Northwell, Hempstead, NY, USA; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY,
USA; Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD,

USA

“To whom correspondence should be addressed; Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada, M5T

IRS; tel: 416-535-8501 x34378, e-mail: aristotle.voineskos@camh.ca

Background and Hypothesis: Neurocognitive and social
cognitive abilities are important contributors to func-
tional outcomes in schizophrenia spectrum disorders
(SSDs). An unanswered question of considerable interest
is whether neurocognitive and social cognitive deficits arise
from overlapping or distinct white matter impairment(s).
Study Design: We sought to fill this gap, by harnessing
a large sample of individuals from the multi-center
Social Processes Initiative in the Neurobiology of the
Schizophrenia(s) (SPINS) dataset, unique in its collection
of advanced diffusion imaging and an extensive battery of
cognitive assessments. We applied canonical correlation
analysis to estimates of white matter microstructure, and
cognitive performance, across people with and without an
SSD. Study Results: Our results established that white
matter circuitry is dimensionally and strongly related to
both neurocognition and social cognition, and that micro-
structure of the uncinate fasciculus and the rostral body of
the corpus callosum may assume a “privileged role” sub-
serving both. Further, we found that participant-wise esti-
mates of white matter microstructure, weighted by cognitive
performance, were largely consistent with participants’
categorical diagnosis, and predictive of (cross-sectional)
functional outcomes. Conclusions: The demonstrated
strength of the relationship between white matter circuitry
and neurocognition and social cognition underscores the
potential for using relationships among these variables to
identify biomarkers of functioning, with potential prog-
nostic and therapeutic implications.
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Introduction

Neurocognitive and social cognitive deficits are pervasive
in schizophrenia spectrum disorders (SSD),!? and tightly
bound to poor functional outcomes.*> Several lines of
evidence have established that neurocognition and so-
cial cognition are behaviorally separable®¢ but an open
question, relevant for treatment discovery efforts, is if
neurocognition and social cognition share a common bi-
ological basis.

Some recent research has approached this question
using functional MRI. For example, our group has
shown that neurocognitive and social cognitive perfor-
mance in SSD can be predicted by resting-state connec-
tivity in the mirror neuron and mentalizing systems, and
that connectivity is predictive of functional outcomes.’
To the best of our knowledge, no study has taken a com-
parable approach in white matter. This is important, be-
cause associations have been shown between white matter
structure and social cognition, and white matter struc-
ture and neurocognition. However, social cognition and
neurocognition are correlated®; therefore it is possible
that they may share similar neural underpinnings, but
some might be distinct. Finally, diffusion MRI has po-
tential as a tool for clinical translation if there is interest
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ultimately in early biological prognostic indicators of so-
cial cognition and neurocognition, as well as targeting for
therapeutics. In particular, advances in diffusion MRI
now allow high quality sequence acquisition in short
periods of time.’

Despite the paucity of studies examining the cogni-
tions in tandem, a large number of neuroimaging investi-
gations have established that disruption of white matter
is associated with neurocognitive deficits, demonstrating
that several long-range, deep white matter tracts are re-
liably impaired in SSD.® A much smaller number of
investigations of social cognition!'-'¢ appear generally
suggestive of the same, but small sample sizes, non-tract-
specific white matter estimates,'” and narrow social cog-
nitive assessments'® are limitations. Moreover, all social
cognitive studies implemented a case-control design and
univariate statistics, which may together preclude bio-
marker identification."

The objective of the present study was to illuminate
the relationship between neurocognitive and social
cognitive performance, and estimates of white matter
integrity, in individuals with an SSD and healthy con-
trol comparisons (HC). We asked: are there some white
matter tracts that relate only to neurocognition, others
only to social cognition, and still others to both? To an-
swer this question, we harnessed data from the Research
Domain Criteria (RDoC) study “Social Processes
Initiative in the Neurobiology of the Schizophrenia(s)”
(SPINS), which collected data from 2015 to 2019. SPINS
was designed to identify impairments in neural circuit
structure giving rise to social cognitive deficits, across
the continuum of people with and without an SSD. An
advantage of the SPINS study is its broad testing of so-
cial cognition. Administering several independent tasks
was necessary because, at the initiation of the SPINS
study and still today, no standardized battery of social
cognition exists, akin to the MATRICS (Measurement
and Treatment Research to Improve Cognition in
Schizophrenia) Consensus Cognitive Battery (MCCB)
for neurocognition.”’ Though other studies from our
group have used the SPINS dataset to investigate the
factor structure of social cognition,?’ and illuminate
the relationship between cognitive performance and
functional activity and connectivity’>? the present in-
vestigation evaluates associations among white matter,
neurocognition, and social cognition.

We employed multivariate canonical correlation anal-
ysis (CCA)*** to reveal the joint structure of white
matter fractional anisotropy estimates, and social cog-
nitive and neurocognitive performance scores. CCA
was an attractive method by which to approach our
question, because it allows for the identification of
cognitively-relevant brain features beyond “one-tract-
one-function” associations, and also lends itself easily
to dimensional analysis (cf. case-control analysis), in
keeping with the RDoC paradigm.*® Via exploratory
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analyses, we explored the utility of CCA model de-
rivatives to illuminate three topical debates in the field;
namely if cognition-constrained estimates of white
matter microstructure might reveal novel subgroups,
confirm psychiatric diagnosis, and/or predict cross-sec-
tional functional outcomes.

Methods

Participants

The SPINS study recruited participants across three
centers: the Center for Addiction and Mental Health
(Toronto), the Maryland Psychiatric Research Center
(Maryland), and Zucker Hillside Hospital (New York).
To allow for non-exact in-sample replication, we derived
a “discovery” and “validation” sample in accordance with
the MRI model upon which participants’ imaging data
were acquired. Our discovery sample comprised n = 135
(85 SSD) collected on a single 3T GE 750w Discovery
in Toronto, and our validation sample comprised n = 173
(93 SSD) collected at all three centers on prospectively
harmonized 3 T Siemens Prismas.

Eligibility Criteria. Participants with SSDs met DSM-5
diagnostic criteria for schizophrenia, schizoaffective dis-
order, schizophreniform disorder, delusional disorder, or
unspecified schizophrenia spectrum and other psychotic
disorder, assessed using an adapted Structured Clinical
Interview for DSM (SCID-IV-TR). Individuals with SSD
were symptomatically stable and had no change in an-
tipsychotic medication or decrement in functioning in
4 weeks before enrollment. Exclusion criteria included
a history of head trauma resulting in unconsciousness,
intellectual disability, substance use disorder within
the past 3 months, debilitating or unstable medical ill-
ness, neurological disease, and MR contraindications.
Additionally, HCs did not ever have a DSM-IV Axis I
disorder, excepting adjustment disorder, phobic dis-
order, past major depressive disorder (over 2 years prior;
presently unmedicated), or a first-degree relative with a
primary psychotic disorder. Participants ranged in age
between 18 and 59. The protocol was approved by the
respective research ethics boards and institutional review
boards, and all participants provided written informed
consent. All research was conducted in accordance with
the Declaration of Helsinki.

Participant Assessment

Neurocognitive Measures. Neurocognition was evaluated
using the MATRICS MCCB,* which provides domain
scores for processing speed, reasoning and problem-
solving, attention/vigilance, working memory, and verbal
and visual learning. We omitted the social cognition do-
main, given our social cognitive battery.?’
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Social Cognitive Measures. We tested social cognition
via five tasks: the Penn Emotion Recognition Test (ER-
40) which tests facial emotion recognition®; the Reading
the Mind in the Eyes Task (RMET) which tests mental
state inference from the eyes”; the Empathic Accuracy
(EA) task which involves evaluation of positive or neg-
ative emotions via video vignettes’*3!'; the Relationships
Across Domains (RAD) task which requires under-
standing of interpersonal relations* and The Awareness
of Social Inference Test-Revised (TASIT) which as-
sesses emotion and social inference via video vignettes.*
Validation studies have found these tasks to be fit for clin-
ical trial use,’** with the exception of the RAD, which is
a test of social perception with adequate psychometric
properties.

Other Measures. Psychiatric symptoms were evaluated
in the SSD sample using the Brief Psychiatric Rating Scale
(BPRS)* and the Scale for the Assessment of Negative
Symptoms (SANS).*® In both SSD and HC groups, the
Birchwood Social Functioning Scale (BSFS)*” evaluated
social functioning, and the Cumulative Illness Rating
Scale-Geriatric (CIRS-G)* evaluated chronic illness
burden. In the SSD group only, we assessed functioning
via the Quality of Life Scale (QLS),* extra-pyramidal
signs via the Simpson-Angus Scale (SAS),* and chlor-
promazine equivalents (CPZE)* for antipsychotics.

Imaging Procedures

Diffusion Imaging: Acquisition and Preprocessing. We
acquired a high-angular axial EPI dual spin echo se-
quence diffusion scan.** Parameters were prospectively
harmonized across scanners within the limits of hard-
ware, as follows: 60 gradient directions, b = 1000, 5
b =0 images (two scanners 6 b =0 s), TR = 8800 ms
(one scanner TR = 17700 ms), TE = 85 ms, FOV = 256
mm; in-plane matrix 128 X 128, and 2.0 mm isotropic
voxels. All images were pre-processed identically: (1)
brain masking via two-step agreement in AFNI (BET)
and MRtrix3 (dwi2mask), (2) motion correction for
inter- and intra-volume movement via FSL (eddy), and
(3) susceptibility distortion correction via BrainSuite
(BDP).

White Matter Analysis. We fit a tensor and reconstructed
white matter tracts via deterministic unscented Kalman
filter tractography,” using the “WhiteMatterAnalysis”
algorithm available in 3D Slicer (https://github.com/
SlicerDMRI). We clustered fibers via supervised
groupwise registration* to the ORG (O’Donnell Research
Group) atlas.*** We report fractional anisotropy (FA), as
it is the most commonly-reported diffusion index,*” and
reflects the most disruption in both illness and cogni-
tive impairment.* We confirmed that no scanner effect
was evident in FA values across the three scanners in the
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validation sample. For imaging quality control proced-
ures, see Supplementary material S2.

Statistical Procedures

Preprocessing.  For all variables of primary interest
(ie, estimates of neurocognitive and social cognitive
performance, and white matter microstructure), we
(1) removed outliers via the adjusted boxplot method
(< 3% of values), (2) imputed removed and missing
data ( <0.05% of values) with chained equations,® (3)
transformed skewed distributions via the Yeo-Johnson
power transformation (all social cognition variables,
all negatively skewed),’! and (4) ensured that no vari-
ables were multicollinear (all in-set VIF < 6).2 Lastly,
we residualized non-meaningful sources of variation on
white matter microstructure; namely age, sex, and anti-
psychotic medication load as estimated by CPZE.>

Canonical Correlation Analysis. We employed CCA* to
model the “doubly multivariate” associations of white
matter microstructure (X set), and neurocognition and so-
cial cognition (Y set). Our X set comprised FA estimates
in 19 deep white matter tracts, selected on the basis of a
previously demonstrated connection to neurocognition
and/or social cognition in existing literature, and reliable
tract segmentation (Supplementary material S1). Our Y
set comprised the previously described six MATRICS
MCCB domain scores, and 10 social cognition scores:
total scores from the ER-40, RMET, EA, and RAD, and
subscale scores from the TASIT (TASIT 1; TASIT 2: sin-
cere; TASIT 2: paradoxical sarcasm; TASIT 2: simple sar-
casm; TASIT 3: lies; TASIT 3: sarcasm). Though 6 of our
social cognition scores derive from the same test, we have
previously shown each to capture unique variance.?! Thus,
our total of 35 features across sets meets the recommended
5:1 observation-to-feature ratio in our n = 173 replication
sample.*® It is not considered inherently problematic that
our Y set contains features of different types (namely do-
main scores, total scores, and subscale scores).”

CCA employs an unsupervised matrix decomposi-
tion technique to re-express X and Y features as lower-
dimensional “canonical variates”, X" and Y, that are
maximally correlated under the constraint of orthogo-
nality. CCA uses a nested procedure to test for signifi-
cant associations between variates, and as such, it does
not require correction for multiple comparisons.”” CCA’s
primary outcome metric is a canonical correlation value
(Rc), which estimates shared structure across variates. Of
interest to us, CCA provides interpretable estimates of
feature importance via structure coefficients (r), which
express the univariate correlation between a given feature
and its canonical variate. Because estimates can prove
unstable across samples,® % we interpreted features sur-
passing the conservative threshold of |r |, .45 in both the
discovery and validation samples.®!
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Exploratory Analyses. An additional output of CCA are
participant-wise “variate scores”, for each variate, and
each set, which weight observed values by the model’s
coefficients. Thus, variate scores have the interesting
property that they are constrained to lie along axes of
variance maximally related to the other set.®> In our case,
X~ variate scores capture participant-wise FA estimates
adjusted for cognitive performance, which we refer to
subsequently as “cognition-constrained white matter”.
In three exploratory analyses, we probed the utility of
cognition-constrained white matter scores from signif-
icant variates to (1) illuminate natural subgroups (via
clustering), (2) confirm “ground truth” diagnostic labels
(via classification), and (3) predict social functioning (via
regression). See Supplementary materail S3 for a com-
plete description of exploratory methods.

Results

Participant Characteristics

Table 1 summarizes participant demographic, clinical,
neurocognitive, and social cognitive characteristics. FA
values in the discovery and validation samples are avail-
able in Supplementary material S4. We observed small
negative to large positive bivariate correlations within
and between white matter and cognition estimates, shown
in Supplementary material S5.

CCA Analyses: White Matter—Cognition Relationships

The CCA analyses were conducted identically in the dis-
covery and validation samples. The full models showed
high canonical correlation values [Rcy ¢ overy = 0-71;
Rey, ipamion = 0-72] (figure 1A). Permutation against em-
pirical null distributions found both models to be signif-
icant: [Py scovery < 0-005; Pyst iparion < 0-001] (figure 1B),
as was parametric testing via the asymptotic Hotelling-
Lawley Trace statistic [Py ccovery = 9-0275 Pysiipation <
0.001], though the more commonly Wilks’ lambda sta-
tistic was mixed [Py ccovery = 0-065, Pyrpiparion < 0-001].
In both samples, nested hierarchical significance testing
revealed only the first canonical variate pair (CV1) of 16
to be significant. CV1 explained a substantial portion of
variance (RC® ¢ vpry = 50%, Rc? =23%) and
redundancy (RdDISCOVERY = 520/0’ VALIDATION = 22%)
Sensitivity analyses in which we systematically altered
aspects of our statistical preprocessing regime (ie, out-
lier removal, imputation, and/or normality correction)
did not change the nature of the global CCA results, and
jacknife resampling (ie, iterative participant removal)
showed global results to be stable. Residual analysis of
participants’ scores on CV1 showed an indistinguishable
pattern across SSD and HC.

CV1 showed several features bearing canonical loadings
beyond our chosen “importance” threshold of |r | 0.45.
Comparison of important features in the discovery and

VALIDATION
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validation samples showed similarity in polarity and
magnitude, though differences were evident in precise
value and rank (figure 1C). In both samples, the body of
the corpus callosum (CC3) and the right uncinate fascic-
ulus (UF) contributed highly, as did the MCCB speed of
processing, attention and vigilance, verbal learning, and
visual learning (neurocognition), and TASIT 3 sarcasm
(social cognition).

Exploratory Analyses

Next, we conducted three exploratory analyses using
participant-wise cognition-constrained white matter
scores from CV1. Because these values are standardized,
we combined them across the discovery and validation
samples, and derived a training (n = 200) and testing
(n = 108) sample.

Cognition-constrained White Matter and Clustering.  First,
we evaluated the potential of cognition-constrained white
matter to reveal participant subgroups, by clustering the
training set via Ward’s complete-linkage method. We
found a five-cluster solution was optimal (figure 2A), with
a Calinski-Harabasz index (CHI) of 595.71 (figure 2B).
However, permutation testing showed this CHI was likely
to occur under the null hypothesis of no clusters em-
bedded in the data (P = .105) (figure 2C).5>63

Cognition-Constrained White Matter and Agreement With
Case/Control Designation. Second, we applied receiver
operating characteristic (ROC) curve analysis to deter-
mine if cognition-constrained white matter might reveal
a clear diagnostic cut-point, separating SSD and HC.
The ROC curve in the training set showed excellent re-
covery (AUC = 0.941 [0.917-0.965]) (figure 2D), which
was highly unlikely to arise from chance (D = 10.36,
P <.001). The Youden index identified an optimal cut-
point at X’ =-0.237 (AUC=0.939 [0.908-0.970],
balanced accuracy = 88.5%), which showed excellent pre-
dictive ability when applied to the held-out test sample
(AUC = 0.948 [0.903-0.982], balanced accuracy = 87%)
(figure 2E). Misclassifications of participants with SSD
and HCs were equally likely (McNemar’s test), and mis-
classified participants were not differentiated by age or
sex, nor symptom severity (SSD only). Comparison of
this model to alternatives taking each white matter fea-
ture uninfluenced by cognition as a predictor, as well as
their combined one-dimensional representation (PCA),
found that only the cognition-constrained -classifier
achieved “exceptional” performance.

Cognition-Constrained White Matter and Prediction
of Real-world Functioning. Lastly, we evaluated if
cognition-constrained white matter might predict social
functioning, as measured by the BSFS,” using 5-fold
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Multivariate Associations Among White Matter and the Cognitions
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AF=arcuate fasciculus; CB=cingulum bundle; ILF=inferior longitudinal fasciculus;
IOFF=inferior occipital-frontal fasciculus; UF=uncinate fasciculus; TF=thalamo-frontal
tract; CC=corpus callosum

Fig. 1. White matter—cognition relationships. (A) Full model canonical correlations (R¢) and participant-wise scores on the first
canonical variate (CV1), in the discovery (left) and replication (right) samples. (B) The observed canonical correlation values (dashed
lines) are unlikely to arise from chance. (C) Several X and Y set variables were important to the CCA resolution as established by

the conversative threshold of |r|, 0.45 (dashed lines). Estimates were grossly similar in magnitude and polarity across samples. Note:
Rec, canonical correlation; CV1, first canonical variate; rs, standardized structure coefficient (canonical loading. For X and Y set
abbreviations in (C), consult paper text.

Page 7 of 12

€202 YoIe|\ GO U0 1sanB Aq 85£690./91ZOBAS/INGUDIS/EB0L "0 1/10P/2[91E-80UBADE/UNS|INGEIUSIYdOZIYOS/WOo dNo"olWapEdE/:SA)Y WOy POPeojumod



N. Calarco et al

p -]

Height

o CHI

X, score True positive rate© Frequency

-

BSFS score

m150
®100
.50-------.-- -y m e me ===y
] 1 1 1
IR s S s S B~
1 2 3 4 5
|| | m n -
Cluster
595.71
2 3 4 5 6 7
Number of clusters
F100 p=.105
B 50
h O
0 250 500 750

Variance ratio criterion

1 75 .50 25
n n n

False positive rate

O

— Training — r— Testing —
AUC=.939 AUC=.949

Fig. 2. Exploratory results. (A—C) clustering analysis; (D,

E) classification analysis, (F) prediction analysis. (A) The
dendrogram in the training sample. The five-cluster solution

is highlighted (dashed boxes). (B) The five-cluster solution
demonstrated the highest Calinski-Harabasz index (black dot).
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schizophrenia” and have been related to the cognitions.
For instance, one recent study found that integrity of
the body of the corpus showed the strongest association
to working memory and processing speed (the only two
neurocognitive variables analyzed),”! and another found
that integrity of the body of the corpus was most related
to social cognition, albeit only assessed via one task be-
lieved to measure social perception.” Our results corrob-
orate and extend these findings by demonstrating the role
of the body of the corpus in the same participants, across
a diverse battery of cognitive tasks.

The UF is also known to be microstructurally dis-
turbed in schizophrenia,” but only a small body of em-
pirical work has explored its relation to the cognitions.
One study found that integrity of the bilateral uncinate
was positively correlated with several neurocognitive do-
mains, as well as emotion processing.” Another study
found that integrity of the right uncinate was associated
with social perception, but the correlation was negative.”
Our results underscore that the uncinate is important to
the cognitions, though further research is needed to un-
derstand an apparent disagreement in lateralization,’® as
well as possible specialization of subcomponents.”

Latent structure-cognition associations were statis-
tically indistinguishable between SSD and HC parti-
cipants. However, this does not prove that there are no
unique structural marker(s) of impaired cognition; we did
not test for this, and others have found some evidence in
favor of it in schizophrenia, for example,” This result ex-
tends prior work by our group, which demonstrated that
the statistical structure of cognition alone is invariant
in SSD and HC.?! Indistinguishable structure-cognition
associations provide post hoc endorsement of a dimen-
sional relationship across SSD and HC, and extends to
structure prior evidence from the SPINS study that mul-
tivariate function-cognition links may be better described
as deficit-specific, as opposed to diagnosis-specific.”>?*

In exploratory analyses, we leveraged CCA model out-
puts (ie, X", scores representing “cognition-constrained
white matter”) to perform clustering, classification, and
prediction analyses. Our clustering analysis failed to illu-
minate natural subgroups, that is, “biotypes”. This may

(C) Permutation testing showed the observed CHI (dashed

line) was not distinguishable from a null distribution (D). A
Receiver Operating Characteristic curve analysis in the training
sample showed excellent recovery, and the Youden index (/)
identified an optimal cut-point (black dot). (E) In both the
training and testing samples, the optimal cut-point showed
excellent predictive ability, in both diagnostic groups (correct
classifications in white, misclassifications in gray). (F) X", scores in
the training set were predictive of social functioning. Note: CHI,
Calinski-Harabasz index; J, Youden index; X, participant-wise
cognition-constrained white matter scores on the first canonical
variate; AUC, area-under-the-curve; HC, healthy control; SSD,
schizophrenia spectrum disorder; BSFS, Birchwood Social
Functioning Scale; RMSE, root-mean-square-error.
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be the consequence of our a priori decision to limit our
search within scores derived from significant canonical
variate(s): we thus searched within a one-dimensional
subspace which is likely to capture something of a global
brain-behavior relationship. Our classification analysis
found that cognition-constrained white matter served
as an excellent diagnostic biomarker (balanced accuracy
in test set = 87%), with confusion mostly circumscribed
to a fuzzy “tipping point”.”® This performance was fa-
vorable among the 10 prior studies that have sought to
distinguish individuals with schizophrenia from HCs
on the basis of white matter features alone, with accur-
acies reported from 62 to 94%.7% Finally, our regression
analysis showed that cognition-constrained white matter
predicted cross-sectional social functioning scores,
though an alternative model utilizing white matter alone
showed superior performance. This may reflect the fact
that cognition-constrained white matter is constrained by
neurocognitive performance, which we have previously
found to be less related to social functioning than social
cognitive performance.?' Despite these mixed exploratory
results, we view weighted structure-cognition scores to be
of high utility to various clustering, classification, and
prediction applications. In particular, our finding that
cognition-constrained white matter accurately predicts
diagnosis could be useful in advancing efforts into the
prodrome or prior, given that subtle differences in both
white matter® and cognitive performance®®! are evident
before frank psychosis onset.

Our study has several limitations. Pertaining to the
SPINS sample, participants were heterogeneous across
many domains, including those that may influence
neurocognition, social cognition, and white matter mi-
crostructure, including age,’>* duration of illness,** % and
antipsychotic exposure.’”?® Further, participants with
SSD were disproportionately male.”' We attempted to
mitigate these limitations by adjusting primary outcomes
for age, sex, and CPZE.A second set of limitations per-
tain to our use of CCA. CCA is “data hungry” in that
it requires a high observation-to-feature ratio to avoid
overfitting (ie, identifying spurious associations that
fail to generalize). To achieve an adequate observation-
to-feature ratio of approximately 5:1° in our validation
sample, we opted to limit our X set to 19 tracts. This fea-
ture selection undercuts the full data-driven power of
CCA. It is possible that other tracts, perhaps the cere-
bellar (peduncles) and projection tracts, may prove rele-
vant to cognition in schizophrenia, based on analogous
findings in healthy individuals.!*'® A related limitation
is that estimates of feature importance may be especially
unstable across samples,®* with a recent suggestion
that this instability only resolves with an observation-to-
feature ratio of 50:1,' which is 10-fold that of our and
most other imaging-cognition studies. We attempted to
mitigate this worry by imposing a high threshold for inter-
pretation (canonical loadings |r | .45),°" and interpreting

Multivariate Associations Among White Matter and the Cognitions

only those features surpassing this high threshold in our
two samples.

Caveats notwithstanding, this study confirms that
white matter microstructure captures an important la-
tent component of neurocognitive and social cogni-
tive performance, and provides novel evidence that
neurocognitive and social cognitive performance are sub-
served by common white matter circuitry. Our results are
strengthened by our comprehensive cognitive batteries,
use of a multivariate approach, and in-sample replica-
tion. Future work should probe the effect of targeting
the body of the corpus and the right UF: improved
microstructural integrity might bring about enhanced
cognitive ability and a corresponding improvement to
functional outcomes in SSD.

Supplementary Material

Supplementary material is available at https://academic.
oup.com/schizophreniabulletin/.
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SUPPLEMENT S1: Visualization of selected white matter tracts
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Note: AF, arcuate fasciculus; UF, uncinate fasciculus; ILF, inferior longitudinal fasciculus; IOFF, inferior
occipital frontal fasciculus; TF, thalamo-frontal tract; CB, cingulum bundle; CC, corpus callosum; CC1,
rostrum; CC2, genu; CC3, rostral body; CC4, anterior midbody; CC5, posterior midbody; CC6, isthmus;
CC7, splenium.
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SUPPLEMENT S2: Imaging quality control procedures

The SPINS study implemented several quality control procedures. To monitor and mitigate unwanted
heterogeneity over five years of data collection, we used an agar phantom that allowed tracking of
scanner drift (115), and annually scanned ‘travelling human phantoms’, allowing for cross-centre and
longitudinal comparison of the same individuals as a proxy for inter- and intra-site scanner related
impacts (116). The SPINS study also conducted centralized training for research assistants and
implemented standard operating procedures across its three sites, that allowed for high quality diffusion
images to be acquired from most study participants. In particular, participants were trained on how to
minimise head motion, especially important given that the diffusion images were the last to be acquired.
An in-scanner camera was employed to monitor participant movement during scans, and corrupted scans
were repeated as possible.

Prior to analysis, all scans were checked for sufficient quality by experienced research staff, making use
of an in-house quality control dashboard (https://github.com/TIGRLab/dashboard) that reviews both
guantitative (e.g., framewise displacement, signal-to-noise) and qualitative metrics (e.g., detecting
ghosting or blurring by eye). As a rule, we attempted to manually correct issues prior to pre-processing,
as exclusion of ‘noisy’ data has been demonstrated to spuriously inflate group FA differences between
individuals with schizophrenia and healthy controls (117). Ultimately, we removed data from one
participant (SSD) on the basis of their acquired diffusion scan.

We also performed quality control of outputs from the whitematteranalysis pipeline. Specifically, we
performed qualitative quality control at three points: (i) initial tractography, (ii) registration to the ORG
atlas, and (iii) creation of the k=41 final tracts, on the the basis of macroscopic features (e.g. trajectory
shape and volume). We removed data from four participants (all HC) on this basis. Notably, we achieved
perfect inter-rater agreement on the plausibility of the trajectories (pass/fail) of final tracts in a subset of
twenty participants, including two participants who were excluded (19 tracts x 20 participants = 380
comparisons). Quantitatively, we reviewed scalar values derived from the tracts for evidence of abnormal
microstructural properties (i.e., outlying FA/MD/AD/RD values) and tract-level characteristics (e.g. outlying
streamline count or length). We removed data from no participants on this basis.


https://github.com/TIGRLab/dashboard

WHITE MATTER-COGNITION ASSOCIATIONS ACROSS HC-SSD

SUPPLEMENT S3: Exploratory methods

In three exploratory analyses, we probed the utility of providing X" variate scores to a clustering, cutpoint,
and prediction analysis, in the spirit of data-driven nosology and precision modelling gaining traction in
the literature. Because these scores are standardized (Z-scores), we combined scores computed
separately within the discovery and validation sets, affording us a larger sample (n=308). We then split
the combined discovery and validation samples into training (n=200, 117 SSD) and testing (n=108, 63
SSD) sets. This split is roughly equal to a 2:1 training:testing ratio (64.94%), and the size of the training
set surpassed a widely-employed stability benchmark established for models containing neuroimaging
features in schizophrenia (i.e., predictive models using structural imaging features in schizophrenia
patients are not stable in sample sizes under n=130) (118). To avoid bias, the entirety of the three
respective procedures is embedded within the validation framework (119).

Clustering analysis

The clustering analysis sought to determine if X"1 scores might reveal innate brain-behaviour biotypes.
We chose to perform hierarchical clustering, in part because hierarchical clustering can accommodate
one-dimensional (only X" is significant), whereas other algorithms (e.g., k-NN) require multidimensional
space. First, we hierarchically clustered X1 scores using Ward’s complete-linkage method (120), which
we established to provide superior clustering structure between comparable agglomerative methods via
highest coefficient (>.999) (121). Ward’s method establishes clusters that minimize dispersion in
Euclidean space, and has been usefully applied in the SPINS dataset(58,85). We set seven clusters as
an arbitrary upper-limit (consistent with one cluster for each of the five SCID-IV-TR schizophrenia
subtypes in our sample, one cluster for healthy controls, and one additional degree of freedom) and then
determined the optimal number of clusters in this range via the Calinski-Harabasz index (CH, also known
as the variance ratio criterion), which represents the ratio of between-cluster dispersion and inter-cluster
dispersion (thus, a higher CH value indicates higher performance) (122). We tested if the observed CH;
index value was different from that derived from a null distribution of two-dimensional Gaussians with
similar characteristics to Xi (mean, covariance, number of observations), but that embeds no underlying
clusters by definition. We reasoned that indistinguishable CH indices would indicate our data likewise did
not embed any true clusters(57). On the other hand, if an observed CHi index surpassed a significant
proportion of the null distribution, we could be confident in our identification of biologically distinct
subgroups, and proceed to interrogate their meaningfulness in relation to psychopathological
characteristics. We used the “cluster’ (123) and "NbClust™ (124) R packages for these analyses.

Cutpoint analysis

The cutpoint analysis aimed to determine if the continuous distribution of X’1 scores might accurately
dichotomize participants in accordance with their “ground-truth” diagnostic label. For this task, we split the
combined discovery and validation samples (n=308) into training (n=200, 117 SSD) and testing (n=108,
63 SSD) sets, as for the prior clustering analysis. We stratified both samples by diagnostic group, to
ensure an approximately equivalent ratio of participants with and without an SSD in the training and
testing sets (~58.5%). Note that though the counts of those with and without an SSD

differ within each set (reflective of the SPINS recruitment strategy preferential to participants with an
SSD), this differences falls far short of “class imbalance”, which refers to the case when one class is
substantially underrepresented in the dataset(125).

To explore the diagnostic accuracy of X’1scores, we employed ROC (receiver operating characteristic)
curve analysis(126), with X1 scores as the independent variable, and binary diagnostic label (i.e., SSD,
HC) as the dependent variable. We fit a ROC curve in the training set, as well as a permuted training set,
obtained by randomly shuffling known diagnostic labels (perm=1000). For both models, we calculated the
AUC (area under the ROC curve) c-statistic, which provides a synthetic goodness-of-fit measure varying
from 0 to 1 (AUC: 0.9-1.0=excellent; 0.8—0.9=good; 0.7—0.8=fair; 0.6—0.7=poor; 0.5-0.6=fail) (127), here
indicating the extent to which Xjscores separate participants with and without SSD. We statistically
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compared the AUC values from the training and permuted models via Chi-square, testing the null
hypothesis that the vertical distance between their respective cumulative distribution functions did not
differ from chance. This statistical test is essential before identifying a cutpoint; indeed, cutpoint analysis
will identify a cutpoint in distributions with no diagnostic accuracy, just as clustering analyses will identify
clusters in continuous data. The absence of this comparison has been cited as a potential cause of the
poor performance and acceptance of purported biological cutpoints in clinical settings (128).

Contingent upon the diagnostic ability of X; scores proving above chance, we then determined the
‘optimal’ location of a diagnostic cutpoint along the ROC curve. There exist several mathematical
strategies to determine an ‘optimal’ cutpoint, that differ primarily in how they weigh the cost of
misclassification(129). We opted to employ the Youden index (J) (130), which defines the optimal cutpoint
as the maximum of the sum of sensitivity and specificity -1, with sensitivity and specificity afforded equal
weight, and has been shown to derive the highest sensitivity estimates in cases when the ‘non-diseased’
population (here, HC) demonstrates high variability (131). Youden index values range from 0 to 1 (0.9-
1.0=exceptional; 0.8—0.9=excellent; 0.7—0.8=acceptable; <0.7=no discrimination), and can be graphically
represented as the longest vertical distance between the ROC curve and its 45 degree line of
chance(132). We evaluated the classification performance of the derived Youden index, in both the
training and testing sets, via several commonly-employed performance metrics (AUC, accuracy,
sensitivity, specificity). We ensured that misclassifications of participants with SSD and HCs were equally
likely, as determined by McNemar’s test for marginal homogeneity. We analysed if the X’1 scores
exhibited qualitatively better classification performance (higher AUC values) than any of the 19 white
matter variables informing the original CCA, as well as their one-dimensional representation achieved via
PCA (95), by re-running the ROC analysis in the training set. We use the 'rPROC" (133), “cutpointr’
(134), and “caret’ (135) R packages for these analyses.

Prediction analysis

Lastly, we sought to determine if X’1 scores could predict social functioning, as measured by the
Birchwood Social Functioning Scale (BSFS) (35). We chose to employ simple linear regression analysis
rather than a more complex machine learning method, as the former retain interpretability and thus allow
explanatory insights at the cost of minimally diminished performance (136). Clinically relevant prognosis
and therapeutic discovery likely requires an adequate explanation of cause (137). BSFS total scores
showed sufficient representation in the tails of the distribution, so we were able to treat functional
outcome as a continuous index, which remains uncommon in the prognostic literature and is a
consequence of assessing outcome across the healthy-to-schizophrenia spectrum (should this criterion
have not been met, a classification model would be preferred to regression (138)). We employed 5-fold 5-
repeat (internal) cross validation to determine adjusted R? goodness-of-fit (representing the proportion of
variation in social functioning that is predicted by the model; higher is better) as well as RMSE prediction
error (root mean squared error, representing the average prediction error made in predicting social
functioning; lower is better). We opted to compare the goodness-of-fit of our model (X1 scores as the
predictor variable) to an alternative model, using all 19 of the white matter FA features as predictor
variables, to determine any ‘value-added’ by our cognition-constrained brain features. Though models
with few predictors typically underfit the data and thus demonstrate lower variance explained than models
with more predictors, additional predictors improve performance only if they provide meaningful
information as opposed to noise (139). For this task, we implemented a likelihood ratio test modified for
non-nested data (140). We used the “caret’ (135) and "poweRlaw” (141) packages for these analyses.
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SUPPLEMENT S4: Participant white matter fractional anisotropy estimates

Discovery sample Validation sample Sample
(GE Discovery) (Siemens Prismas) comparison
SSD-HC SsSD HC SSD-HC SSD HC
n=135 n=89 n=46 n=173 n=91 n=82
mean mean mean PVall€| mean mean mean P-value p-value
(SD) (SD) (SD) adit | (SD) (SD)  (SD)  adiT adj. T
Fractional anisotropy
0.60 0.60 0.61 0.53 0.52 0.53
AF left (0.02) (0.03) (0.02) 1.000 | (0.04) (0.04) (0.04) 0.274 0.000
0.57 0.57 0.57 0.52 0.51 0.53
AF right (0.02) (0.02) (0.03) 1.000 | (0.04) (0.04) (0.03) 0.041 0.000
0.50 0.50 0.50 0.44 0.43 0.44
CB left (0.03) (0.03) (0.02) 1.000 | (0.03) (0.03) (0.03) 0.102 0.000
0.49 0.48 0.49 0.43 0.42 0.43
CB right (0.03) (0.03) (0.03) 1.000 | (0.03) (0.03) (0.03) 0.044 0.000
0.51 0.51 0.52 0.47 0.46 0.48
ILF left (0.02) (0.02) (0.02) 1.000 | (0.03) (0.03) (0.03) 0.008 0.000
0.51 0.51 0.52 0.47 0.46 0.48
ILF right (0.02) (0.02) (0.02) 1.000 | (0.03) (0.03) (0.03) 0.004 0.000
0.63 0.63 0.63 0.54 0.53 0.55
IOFF left (0.03) (0.02) (0.03) 1.000 | (0.04) (0.04) (0.04) 0.015 0.000
0.63 0.62 0.63 0.55 0.54 0.55
IOFF right (0.02) (0.02) (0.02) 1.000 | (0.04) (0.04) (0.03) 0.021 0.000
0.49 0.49 0.50 0.46 0.45 0.46
TF left (0.01) (0.01) (0.01) 1.000 | (0.02) (0.02) (0.02) 0.158 0.000
0.48 0.48 0.49 0.46 0.46 0.46
TF right (0.01) (0.01) (0.01) 0.720 | (0.02) (0.02) (0.02) 0.111 0.000
0.48 0.49 0.48 0.43 0.43 0.44
UF left (0.03) (0.03) (0.03) 1.000 | (0.03) (0.03) (0.03) 1.000 0.000
0.46 0.46 0.46 0.44 0.44 0.44
UF right (0.03) (0.03) (0.03) 1.000 | (0.03) (0.03) (0.03) 1.000 0.000
0.51 0.51 0.51 0.47 0.46 0.48
CC1 (rostrum) (0.03) (0.03) (0.02) 1.000 | (0.03) (0.03) (0.02) 0.075 0.000
0.57 0.57 0.57 0.53 0.53 0.54
CC2 (genu) (0.02) (0.02) (0.02) 1.000 | (0.03) (0.03) (0.02) 0.007 0.000
0.59 0.59 0.60 0.55 0.55 0.56
CC3 (rostral body) (0.02) (0.02) (0.02) 0.534 | (0.03) (0.03) (0.02) 0.025 0.000
0.60 0.60 0.60 0.57 0.56 0.57
CC4 (anterior midbody) (0.02) (0.02) (0.01) 0.593 | (0.03) (0.03) (0.02) 0.063 0.000
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CCS5 (posterior midbody)

CC6 (isthmus)

CC7 (splenium)

0.60
(0.02)

0.61
(0.01)

0.61
(0.02)

0.60
(0.02)

0.61
(0.01)

0.61
(0.02)

0.60
(0.02)

0.62
(0.01)

0.62
(0.02)

1.000

0.408

1.000

057 057 058
(0.03) (0.03) (0.02)

057 057 058
(0.02) (0.02) (0.02)

058 058 059
(0.02) (0.02) (0.02)

0.393

0.037

0.047

0.000

0.000

0.000

All p-values are derived from a t-test. The three “p-value adj” columns have been Bonferroni corrected for
multiple comparisons. T The p-values within the Discovery sample and Validation sample "blocks"
respectively compare the SSD and HC scores (providing a comparison of participant groups within
sample), and the respective SSD-HC columns describe the sample's combined participants' mean and
standard deviation. I The p-values in the Sample comparison block compare the combined SSD-HC
means and standard deviations between the Discovery and Validation samples (providing a comparison

across samples).

Note: AF, arcuate fasciculus; CB, cingulum bundle; CC, corpus callosum; HC, healthy control; ILF,
inferior longitudinal fasciculus; IOFF, inferior occipital-frontal fasciculus; SSD, schizophrenia spectrum

disorder; SSD-HC, schizophrenia-to-healthy control spectrum; TF, ; UF, uncinate fasciculus.




WHITE MATTER-COGNITION ASSOCIATIONS ACROSS HC-SSD

SUPPLEMENT S5: Bivariate correlations of all CCA features
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Bivariate correlations between all variables are shown in the (A) discovery sample and (B) replication
sample. Correlation strength is denoted by colour and size in the upper triangle, and numerically in the
lower triangle. Correlations were highest within the X set (mean=.52, min=-.26, max=.85), followed my
within the Y set (mean=.35, min=-.12, max=.72), and lastly between sets (mean=.06, min=-.35, max=.37).



