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A B S T R A C T

Multi-center MRI studies can enhance power, generalizability, and discovery for clinical neuroimaging research
in brain disorders. Here, we sought to establish the utility of a clustering algorithm as an alternative to more
traditional intra-class correlation coefficient approaches in a longitudinal multi-center human phantom study.
We completed annual reliability scans on ‘travelling human phantoms’. Acquisitions across sites were harmo-
nized prospectively. Twenty-seven MRI sessions were available across four participants, scanned on five scan-
ners, across three years. For each scan, three metrics were extracted: cortical thickness (CT), white matter
fractional anisotropy (FA), and resting state functional connectivity (FC). For each metric, hierarchical clustering
(Ward's method) was performed. The cluster solutions were compared to participant and scanner using the
adjusted Rand index (ARI). For all metrics, data clustered by participant rather than by scanner (ARI > 0.8
comparing clusters to participants, ARI < 0.2 comparing clusters to scanners). These results demonstrate that
hierarchical clustering can reliably identify structural and functional scans from different participants imaged on
different scanners across time. With increasing interest in data-driven approaches in psychiatric and neurologic
brain imaging studies, our findings provide a framework for multi-center analytic approaches aiming to identify
subgroups of participants based on brain structure or function.

1. Introduction

The collaborative NIMH-funded multi-center study, ‘Social Processes
Initiative in Neurobiology of the Schizophrenia(s)’ (SPINS) aims to identify
neural circuitry related to social cognitive impairments in nearly 500 people
who are healthy or who have a schizophrenia spectrum disorder (SSD). This
study is being conducted as a part of the NIMH's Research Domain Criteria
(RDoC) initiative. SSDs have been associated with changes across several
structural and functional neuroimaging metrics, including deficits in white
matter identified via cortical thickness (Schultz et al., 2010; Wheeler et al.,
2015), diffusion imaging (Voineskos et al., 2010), and resting state functional
connectivity (Rotarska-Jagiela et al., 2010; Zhou et al., 2007). The SPINS
study adopted a multi-modal data acquisition approach to best characterize
these structural and functional neuroimaging metrics and measure how they
relate to social cognitive processes.

Multi-center data collection allows for larger sample sizes, enabling
discovery-based research (Clementz et al. 2016; Drysdale et al. 2017;
Van Essen et al. 2013; Insel et al. 2010; Cannon et al. 2017) with more
generalizable results (Baker, 2016). All multi-center studies face chal-
lenges with data harmonization and quality control (Brown et al., 2011;
Fortin et al., 2017; Glover et al., 2012; Huang et al., 2012; Mirzaalian
et al., 2016; Simmons et al., 2011; Wonderlick et al., 2009). Each of the
three sites within the present study had different MRI scanners, but scan
acquisition parameters were harmonized as much as possible across
sites prior to study initiation to minimize site-based variability, and a
phantom-based quality assurance (QA) protocol was developed to track
scanner changes over time (Chavez et al., 2018). We also collected data
on a group of individuals, ‘travelling human phantoms’, who visited all
sites annually, to assess the reliability of brain imaging metrics across
scanners and time.
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Here, we compare the travelling human phantom data on key neu-
roimaging outcome metrics to study the influence of site-specific scanner
effects over a period of three years. We hypothesized that participant-level
variability of outcome metrics is greater than scanner-level variability both
cross-sectionally and over time. We tested this assumption via cluster
analysis (Finn et al., 2015; Shen et al., 2017). Previous studies aimed at
characterizing inter-site reliability or differences have focused on factors
such as intraclass correlation (ICC) of various metrics across sites
(Jovicich et al. 2013, 2016; Forsyth et al. 2014; Whelan et al. 2016) or
across-session reproducibility (Jovicich et al. 2014; Pfefferbaum et al.
2003; Choe et al. 2015; Kristo et al. 2014; Noble et al. 2017). The North
American Prodrome Longitudinal Study (NAPLS) is an excellent example,
scanning eight subjects twice each at eight scanners, and having examined
the generalizability of the results across various imaging modalities and
pipelines (Gee et al. 2015; Forsyth et al. 2014). The purpose of these
analyses in traveling subjects or multi-scanner studies is often to determine
if combining data across scanners is acceptable (as in e.g., Cannon et al.
2017; Deprez et al. 2018) or to determine the specific effects of doing so
on a particular measure (Helmer et al. 2016). While these metrics can be
highly informative, they may also present an incomplete picture. For ex-
ample, while ICCs of repeated resting fMRI data are often quite low
(Anderson et al., 2011; Birn et al., 2013; Noble et al., 2017; Patriat et al.,
2013), individual scans across time can be reliable enough to be identi-
fying within an individual (Finn et al., 2015), and ICCs may be greater for
more global, connectomic measures (Noble et al., 2017), suggesting that
ICC scores vary by measure and method, and low ICCs may obscure the
true reliability of the measures within as opposed to between participants.

We chose an approach that examines neuroimaging outcome me-
trics across sites, time, and participants simultaneously. Rather than
determining simply whether the scanner data are suitably harmonized
(in the spirit of Glover et al. 2012), or as an estimate of the power gain
from a multi-site study, our approach treats the outcome metrics as a
classification problem and attempts to group the scans by participant
(in the ‘fingerprinting’ spirit of Finn et al., 2015) using neuroimaging
data across multiple sites and time-points. Our structural and functional
metrics of interest were: cortical thickness (CT) from structural T1,
fractional anisotropy (FA) from diffusion weighted (DTI) scans, and
functional connectivity (FC) from resting fMRI. We used hierarchical
clustering to evaluate classification accuracy across time and site. This
study had two purposes: 1) to demonstrate that MRI metrics would be
individually identifying even across scanners, supporting the collapsing
of data across sites, and 2) to demonstrate that hierarchical clustering
applied to MRI metrics would identify similar scans, even in the case of
a small sample with many variables. We hypothesized that scan metrics
would cluster together by individual participant rather than by site. As
an additional exploration of scanner influences on our neuroimaging
metrics, scanner-based differences were examined in each neuroima-
ging metric, and scan-to-scan reliability was assessed using ICC.

2. Methods

2.1. MRI scanners

Data were collected at three sites starting in 2014. The Centre for
Addiction and Mental Health (CMH) in Toronto used a General Electric

750w Discovery 3T MRI throughout the study. Maryland Psychiatric
Research Center started data collection using a Siemens Tim Trio 3T
MRI (this MRI will be referred to as MRC) in 2014-15, and then up-
graded to a Siemens PRISMA 3T MRI in 2016 (referred to as MRP).
Zucker Hillside Hospital in New York started data collection using a
General Electric 750 Signa 3T MRI in 2014 and 2015 (referred to as
ZHH), and then upgraded to a Siemens PRISMA 3T MRI in 2016 (re-
ferred to as ZHP). Scans were labeled by site tag and scanning year. As
scans were collected annually, we used the following terminology:
‘Year1’ is study initiation (fall of 2014), ‘Year2’ is the fall of 2015, and
‘Year3’ is the fall of 2016. Thus, for example, CMH_Year1 was a scan at
the CMH scanner at study initiation, MRC_Year2 was a scan at the be-
ginning of the second year on the original scanner at the MRC site, and
ZHP_Year3 was a scan at beginning of the third year on that site's up-
graded scanner. Scans were performed at CMH for years one, two and
three, on the ZHH and MRC scanner for years one and two, and at ZHP
and MRP scanners for year three only. See Table 1 for study scanning
flow.

2.2. Participants (human phantoms)

Data were collected from four healthy male adult participants aged
34 to 59. No participant had a history of psychiatric or neurological
problems, including concussion, or other serious medical conditions.
Participant 1 (P1) had six total scans, one at each site for Year1 and
Year2. This participant was unavailable for Year3. P2 and P3 completed
all nine possible scans. P4 was introduced in Year3, and completed
three scans (CMH, ZHP, and MRP). See Table 1 for a schematic of
participant characteristics and study scanning flow. The study had REB
or IRB approval at all three sites, and all participants gave informed
consent.

2.3. MRI scan parameters

Scanning parameters were matched as closely as possible across all
scanners, within the limitations of the scanner hardware. A complete
list of all scan parameters by site is included in Supplemental Table 1.
T1 anatomical scans were manufacturer-specific fast gradient echo se-
quences (MPRAGE for the Siemens scanners and BRAVO for GE scan-
ners; TR = 2300 ms, 0.9 mm isotropic, no gap, interleaved ascending
acquisition order, with TE from 2.78-3ms, as determined by the
scanner-specific hardware). As is standard practice at that site to in-
crease scan SNR (Kochunov et al., 2006), at MRC and MRP three T1
scans were acquired and subsequently averaged into a single image
prior to any preprocessing. DTI scans used an axial EPI dual spin echo
sequence (60 gradient directions, b = 1000, five baseline scans with
b = 0 (or six in the case of the PRISMA scanners at MRP and ZHP),
TR = 8800 ms, with the exception of ZHH where TR = 17700 ms;
TE = 85 ms; FOV = 256 mm; in-plane matrix size was 128 × 128,
2.0 mm isotropic voxels). Resting fMRI scans used an EPI sequence
(number of volumes acquired was 212, TR = 2000 ms, TE = 30.0 ms,
FOV = 20 cm, 40 slices of 4 mm thickness, interleaved ascending ac-
quisition order). The resting MRI scan lasted seven minutes, and par-
ticipants were instructed to close their eyes, remain awake, and let their
mind wander.

Table 1
Participant characteristics and scanning schedule.

Year 1 Year 2 Year 3
Sex Age CMH MRC ZHH CMH MRC ZHH CMH MRP ZHP total #

P1 M 52 x x x x x x 6
P2 M 59 x x x x x x x x x 9
P3 M 36 x x x x x x x x x 9
P4 M 39 x x x 3

Note. Age is age at Year 1.
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2.4. MRI analyses

2.4.1. Cortical thickness (CT) analysis
T1 scans were processed using FreeSurfer (Fischl, 2012) (version

5.3.0). In accordance with the ENIGMA protocol (http://enigma.usc.
edu/protocols/imaging-protocols), average CT was extracted for 68
ROIs from the Desikan–Killiany atlas (Desikan et al., 2006).

2.4.2. Fractional anisotropy (FA) analysis
DTI data for the three sites were processed using the ENIGMA-DTI

analysis pipeline (Jahanshad et al., 2013) (http://enigma.ini.usc.edu/
ongoing/dti-working-group/), which includes quality control and
quality assurance steps. The ENIGMA pipeline runs a variant of tract-
based spatial statistics (Smith et al., 2006), in which the data is warped
via a non-linear transform (FNIRT) to a specific template and FA values
are extracted from a set of ROIs, and was implemented using FSL v 5.0.9
(Jenkinson et al., 2012). The DTI data were corrected for motion and
eddy current distortions, a diffusion tensor was fitted for each voxel,
and FA maps were generated using FSL. Next, individual FA maps were
warped to an ENIGMA-DTI template and projected onto the ENIGMA-
DTI skeleton that represents the middle of the tract of major white
matter structures. ENIGMA-DTI per-tract average values were calcu-
lated for 63 ROIs from the Johns Hopkins University White Matter Atlas
(Mori et al., 2005) by averaging values along tract regions of interest in
both hemispheres.

2.4.3. Functional connectivity (FC) fMRI analysis
The first four TRs were removed from each fMRI series followed by

slice timing correction. AFNI (Cox, 1996) (v.2014.09.22) was used to
deoblique each image, perform motion correction, and perform brain
masking. Time series outliers were removed via L1 regression (using
AFNI's 3dDespike) and each run was scaled to have a global mean signal
of 1000. Framewise displacement (FD) was calculated during motion
correction, as was a measure of instantaneous global signal fluctuation
(DVARS, the root mean square of in-brain intensity changes per TR)
(Power et al., 2012). If FD or DVARS exceeded 0.3mm/TR or 3%, re-
spectively, for a given TR, that TR, the one preceding it, and the one
following it were replaced with a linear interpolate between the sur-
viving TRs. A nuisance regression model was generated for each subject
to remove potential noise components, with the following regressors:
second order Legendre polynomial, the six head motion parameters, the
mean white matter signal (WM), the mean cerebrospinal fluid signal
(CSF), the global mean brain signal, the derivative, squares, and squares
of the derivatives of these signals, and finally the first three principal
components of the WM and CSF (aCompCor) (Muschelli et al., 2014). In
this way, we accounted for the tissue-specific regressors, head motion
parameters (Satterthwaite et al., 2013), and the regression of the global
mean signal, which while introducing artefactual negative correlations
is also known to increase the correspondence of electrophysiological
and hemodynamic signals (Keller et al., 2013). Time series were then
low-passed using a bi-directional Butterworth filter and a cut-off fre-
quency of 0.1 Hz (Carp, 2013). The registration transformation between
each subject's T2*-weighted (EPI BOLD) volumes and their T1-weighted
volume were calculated between the 3Ddespike and nuisance regres-
sion steps described above using linear registration (6 degrees of
freedom; FSL FLIRT). The linear (12 DOF) and non-linear transform
between the T1-weighted volume and MNI atlas were also calculated
using FNIRT. These transformations were finally concatenated and
applied to the low-pass filtered T2*-weighted volumes to warp the fMRI
data into MNI space in one step. Resting functional connectivity was
calculated from the average time series within 268 ROIs (Shen et al.,
2013). This atlas was selected as it was recently shown to be of suffi-
cient resolution to allow for identifying individuals using their resting
state functional connectivity alone (Finn et al., 2015). Pairwise corre-
lations were calculated for each ROI, resulting in 35778 unique con-
nections.

2.5. Statistical analysis

2.5.1. Evaluating cross scanner differences
A Mixed Effect Model was used to test for differences in our neu-

roimaging metrics across scanners. The model used scanner nested
within year and subject, as well as year nested within subject as random
effects. Scanner also entered the model as fixed effect since we were
interested in its overall effect.

2.5.2. Hierarchical clustering
A matrix was created for each modality (CT, FA, and FC), with

scanning sessions as rows and the neuroimaging metric as columns. All
modalities were analyzed similarly. Euclidean distance (the sum of the
squared difference between all data points) was calculated between
each pair of scanning sessions for each metric. Note that as Euclidean
distance is related to the scale/range and number of points in the input
data, it cannot be compared across metrics. Hierarchical clustering was
performed using Ward's minimum variance method (Ward, 1963).
During each stage of the bottom-up agglomerative hierarchical clus-
tering procedure, total within-cluster variance is minimized by identi-
fying a new cluster pair/linkage that leads to the minimum increase in
total within-cluster variance. Ward's linkage works under the assump-
tion that the initial distances between each pair of data is proportional
to the Euclidean distance. Given that the clustering approach groups
similar data sets together, it can be considered a classifier, with the
classification being accurate when scans from individuals are correctly
grouped together.

2.5.3. Evaluating cluster accuracy
As we had specific a priori cluster labels to compare (travelling human

phantom ID or scanner), we compared a range of cluster solutions to these a
priori labels using the adjusted Rand index (ARI; (Hubert and Arabie, 1985;
Rand, 1971), which was calculated via a MATLAB function (https://github.
com/areslp/matlab/blob/master/code_cospectral/RandIndex.m; accessed
April 2017). The ARI is the probability that any pair of data points share a
label across two input solutions (e.g. if data points A and B share a label in
two cluster solutions, they are a “match”), adjusted for the random chance
probability for matched labels given the number of pairs. ARI values ap-
proximating zero indicate no overlap or random overlap, and an ARI of one
indicates perfect matching of labels. Note that for a set of unmatched labels
(e.g. comparing four participant IDs to a solution of five clusters) the ARI
will by definition be below one, because it is not possible for all labels to
match, though an ARI can still be calculated.

‘Ground truth’ labels for each of the 27 scans were created for com-
parison to cluster metrics. These ground truth labels included participant ID
(collapsed across scanner and year; k = 4), scanner (collapsed across par-
ticipant ID and year; k = 5), and year (collapsed across participant ID and
scanner; k = 3). Additionally, as we were interested to examine scanner-
based effects in the data, we created an additional label of participant by
site, collapsed across years (k=16; e.g. P1 at CMH, P1 at MRC, P2 at CMH,
etc.). For completeness, labels were also created for scanner by year and
participant ID by year. For each imaging metric, the resulting linkage tree
(dendrogram) was divided into separate solutions ranging from two to 20
clusters. Cluster membership was compared to these ground truth labels
using the ARI, thus allowing a quantitative comparison of the accuracy of
each cluster solution against a ground truth of a priori labels.

In order to formally assess if the ARI differed from chance, a null
distribution was created using a permutation approach. Each label was
randomized across 1000 iterations and compared to the cluster solu-
tions from two to 20 clusters, thus representing a distribution of ARI in
the null case (e.g. when labels were random but with the same fre-
quency as the true labels). ARI values which fell above 99% of this null
distribution were considered significant (i.e. the cluster solution
grouped by label more so than would be expected by chance). The
evaluation of ARI relative to these labels allowed us to quantify if scans
clustered by any of these labels, and to what extent.
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2.5.4. Intraclass correlation coefficient (ICC) calculation
To facilitate comparison to other studies, ICC was calculated ac-

cording to the methods of Shrout and Fleiss (1979), using a two-way
mixed single measures model; ICC(3,1) as defined in the Shrout and
Fleiss notation. ICC was calculated for the three metrics for each par-
ticipant (collapsing across scanners and year), and for scanners (col-
lapsing across participants and years).

3. Results

3.1. Scanner differences by metric

Mean CT, FA, and FC values for each scan, separated by scanner, are
presented in Fig. 1. The mixed effects model revealed significant dif-
ferences across scanners for mean CT, F(4,14) = 28.5, p < 0.0001, and
for mean FA, F(4,8) = 82, p< 0.0001, but not for FC, F(4, 9.8) = 0.78,
p = 0.56. Given that there were scanner-specific effects in the CT and
FA metrics, scanner effects were regressed out of each ROI by building a
model incorporating one column per site (thus treating site as a non-
linear nominal variable). All further analyses on CT and FA were run on
this data with scanner-based effects regressed out, unless otherwise
specified.

3.2. Hierarchical clustering

Cluster solutions for CT, FA, and FC are presented in Fig. 2. For both
CT and FA, scans clustered by participant ID as opposed to site. In both
cases, a four cluster solution resulted in a perfect match with partici-
pant ID. In the cluster results for FC, one scan from P3 (Year2 at MRC)
was excluded due to excessive motion (only 12 TRs retained after
motion censoring). The remaining scans largely clustered by participant
ID, with the exception of three scans from P3 (one of which clustered
with P4, and two of which formed singular clusters). As one scan from
P3 had been removed due to excessive TR censoring, we examined
these three misclassified cases. Two of these scans each formed a cluster
of size one. Both scans had the majority of TRs censored due to motion
(113 and 136, respectively, out of a total of 208 TRs included in the
analysis), and can therefore be considered high motion scans which
would likely be excluded from most studies. The P3 scan that clustered
with P4 had only a single TR removed due to censoring, thus re-
presenting a classification error.

We further explored motion by examining the number of TRs cen-
sored in other participants. The average number of censored TRs by
participant is presented in Supplemental Table 2. Of the P3 scans which
were correctly classified, the highest number of censored TRs is 66.
Amongst other participants, the most censored TRs in a single scan is
38. Notably, while P2 had a moderate number of censored TRs (mean
22.1, range 7–33), the scans from that participant were still correctly

classified by participant ID. This suggests that resting fMRI may be
generally reliable even in the presence of moderate motion, when
adequate processing and noise reduction is performed, while empha-
sizing the need to remove high motion scans.

As scanner effects were regressed from both FA and CT, we ran an
additional clustering analysis on those data sets without regressing
scanner effects (Supplementary Fig. 1). Despite the fact that there was a
significant scanner effect in CT, the scans still clustered by participant,
with the exception of P2, who split into two connected smaller clusters
(separating MRC and MRP scans from the other sites). For FA, scanner
effects were evident in this clustering solution, with the Prisma scan-
ners (MRP and ZHP) forming a distinct cluster. Additionally, clustering
on CT was rerun using only regions in the prefrontal cortex (Supple-
mentary Fig. 2), showing accurate clustering by participants with only a
smaller set prefrontal ROIs. Clustering with FC was rerun using only
nodes in the default mode network (DMN), which resulted in a greater
number of classification errors, suggesting single network connectivity
was less useful for identifying individuals than whole brain con-
nectivity.

3.3. Evaluating cluster accuracy via ARI

The analysis comparing the ARI for each cluster solution from two
to 20 for each metric is presented in Fig. 3. Solutions for which the ARI
for each label was above the 99th percentile of the null are flagged with
a circle. For both CT and FA, the ARI for participant ID was above the
null for all cluster solutions, with an ARI of one for the four cluster
solution, indicating a perfect match between participant ID and the
cluster solution. The ARI naturally decreased between ID and cluster
solutions greater than four, as comparing an increasing number of
cluster labels to the four labels in the ID solution will by definition
decrease ARI. Year and scanner were near zero and below the null for
all solutions for both FA and CT. ARI for ID by scanner and ID by year
were above the null for several cluster solutions in CT and FA. However,
these ARI values remained relatively low (peaking at ARI < 0.4, as
opposed to ARI= 1 for participant IDs).

ARI analysis for FC was performed with the two high motion scans
from P3 removed, as those scans separated to form singleton clusters
and will bias the ARI scores. When comparing cluster solutions to
participant IDs, the highest ARI was found for a four cluster solution
(ARI= 0.922), again showing very close agreement between partici-
pant label and cluster labels. When comparing cluster solutions to
scanners, ARI for all cluster solutions did not exceed our null dis-
tribution threshold. Again, ARI values comparing the cluster solutions
for FC to the ID by scanner and ID by year were above the null for
several cluster solutions, but were still relatively low (ARIs < 0.4)
compared to ID.

Fig. 1. Mean cortical thickness (CT; left), fractional anisotropy (FA; center), and functional connectivity (FC; right) values for every scan, separated by color/shape
(for participant ID) and scanner (columns). Significant scanner based differences in the means were present in both CT and FA, but not FC.
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3.4. Intraclass correlation coefficients

ICCs were calculated using both the original CT, FA, and FC values
(prior to regressing scanner effects from CT and FA), and on CT and FA
with scanner effects regressed out. ICC values for participants and
scanners are presented in Table 2. For data without regressing scanner
effects, ICCs for CT were in the range of 0.89–0.98, for FA were in the

range of 0.82–0.97, and for FC were in the range of 0.22–0.39. ICCs
were in most cases higher within participant than within scanner. ICCs
across scanners were still quite high for CT and FA. Regressing scanner
effects from ROIs in CT and FA resulted in a reduction in ICC values.
There was a moderate drop in within participant ICCs, save for the
scans for P4 which had an ICC near zero. This may be related to the fact
that scanner and ID are in fact confounded, in that not all participants

Fig. 2. Results of the hierarchical clustering analysis for: A) cortical thickness (CT); B) fractional anisotropy (FA); C) functional connectivity (FC). The distance matrix
shows Euclidean distances between scans (defined as the sum of the squared difference between each ROI for each pair of scans, such that lower distances between
scans mean they are more similar). The cluster tree (dendrogram) is shown on the left. Color coding on the dendrogram represents participant ID. Participant ID,
scanner, and year for each scan in the distance matrix is shown on the right.
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had equal data on all scanners. ICC for scanner was negative in all cases
when scanner was regressed from the data, suggesting no scan-to-scan
reliability across scanners.

4. Discussion

We examined twenty-seven MRI datasets for four individuals col-
lected across three sites, five scanners, and three annual scanning ses-
sions. Scanning parameters were harmonized across sites to minimize
inter-site variance. Rather than only assess reliability across scans and
time via similarity metrics such as intraclass correlation, we used a

hierarchical clustering approach to examine whether results of each
neuroimaging measure were more similar within-subject compared to
within-scanner. We sought to determine whether this clustering ap-
proach could identify an individual from all other participants
(Finn et al. 2015). Scanner-based effects were present in both the CT
and FA data; these were corrected for by regressing scanner effects from
each ROI. Alternate approaches (Chen et al., 2014; Fortin et al., 2017;
Mirzaalian et al., 2016) may be more appropriate for group compar-
isons or multivariate statistical approaches across multiple brain re-
gions simultaneously. Classification accuracy was high across all me-
trics, with no misclassifications in CT or FA, and only a single individual
misclassified based on FC. Critically, the perfect or high classification
accuracy (quantified via ARI) across individuals shows that these me-
trics can be considered reliable indicators of structure and function that
are specific to an individual. This provides strong support for the in-
tegration of data in multi-center studies, and supports the use of hier-
archical clustering to identify individuals across imaging metrics.

While traditional analyses of neuroimaging data have relied upon
group statistics, they explicitly assume homogeneity within the samples
under investigation. This assumption is dubious even in healthy in-
dividuals, where variability in task activity (Miller et al. 2012) and
functional architecture (Gordon et al. 2017) appear to be the norm
rather than the exception. Data driven approaches may be less limited

Fig. 3. Cluster solutions for cortical thickness (CT; top), fractional anisotropy
(FA; middle) and functional connectivity (FC; bottom) for cluster solutions ran-
ging from two to 20 clusters. An analysis was conducted to establish if a given
cluster solution was related to the participant ID or scanner. Year was included as
a ‘control’ variable. An adjusted Rand index (ARI) was calculated for each cluster
solution and scan-related variables, namely participant ID (4 labels; P1, P2, P3,
P4), scanner (5 labels; CMH, MRC, MRP, ZHH, ZHP), year (3 labels; year1, year2,
year3), a combination of ID by scan site (16 labels; e.g. P1 at CMH, P1 at MRC,
etc.), ID by year (9 labels; e.g. P1 during year1, P1 during year2, etc.), and year
by scanner (9 labels, e.g. CMH at year1, CMH at year2, etc.). Circles/dots indicate
ARI values which are above chance as determined via a null distribution created
using a permutation test, suggesting greater than chance overlap between that
label and the cluster solution.

Table 2
ICC values within participant and within scanner.

P1 P2 P3 P4 CMH MRC MRP ZHH ZHP

Original values (no regression for scanner effects)
CT 0.98 0.91 0.97 0.90 0.89 0.91 0.89 0.89 0.90
FA 0.97 0.96 0.95 0.82 0.88 0.84 0.85 0.83 0.89
FC 0.37 0.39 0.26 0.39 0.30 0.22 0.27 0.25 0.31
Modified values (after regressing scanner effects)
CT 0.82 0.54 0.75 0.05 −0.13 −0.20 −0.20 −0.50 −0.50
FA 0.90 0.52 0.74 0.00 −0.10 −0.20 −0.17 −0.38 −0.34
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by heterogeneity compared to case-control designs, and thus may re-
present an opportunity for discovery, especially within psychiatric po-
pulations (Van Horn, Grafton, and Miller 2008). Recent work has
highlighted the power of clustering approaches for uncovering new
disease and treatment response subtypes respectively (Clementz et al.
2016; Drysdale et al. 2017). We demonstrated that clustering can be
used to group scans with similar characteristics, even when site/
scanner based effects are present. Furthermore, even when examining
the full spectra of information available for a given neuroimaging me-
tric, we were able to achieve high classification accuracy. This supports
the use of hierarchical clustering as a tool for discovery to identify
groups of participants in a larger dataset with similar brain structure or
connectivity. Furthermore, it may be reasonable to do so using data
from the entire brain rather than using a data reduction approach or
selecting a set of regions a priori. Such data reduction and feature se-
lection practices can have a strong biasing effect on classification, may
eliminate important sources of individual variability, and affect re-
producibility. The importance of individual neuroanatomical variability
(Mueller et al. 2013), even in healthy young adult humans has been
shown in a recent study using the large multi-site Human Connectome
dataset identifying a subset of participants with atypical patterns of
fMRI task activations (Tavor et al. 2016). Approaches such as hier-
archical clustering may group together participants with common and
relevant atypical activity patterns.

This analysis has an advantage over previous studies examining
cross-scanner variability: rather than using measures such as different
forms of ICC, we used an unsupervised classification approach which
groups data sets (in this case, scans) by similarity. Recent work has
emphasized relatively poor scan-to-scan reliability across shorter
resting state functional acquisitions (Anderson et al., 2011; Birn et al.,
2013; Noble et al., 2017; Shou et al., 2013), and the reliability of
functional connectivity may be greater when an individualized as op-
posed to group parcellation scheme is used (Laumann et al., 2015).
However, despite this relatively low reliability for FC as measured by
ICC and reduced ICC when scanner effects were regressed from CT and
FA, all metrics showed strong clustering by participant. This demon-
strates that even in the context of low scan-to-scan reliability
the FC data remains individually identifying. As demonstrated in
Finn et al. (2015), resting state connectivity can be individually iden-
tifying. It is becoming progressively clear that structural and functional
patterns within an individual's brain are consistent to the point that
they may be considered a stable and identifying characteristic of that
individual, even when measured across scanners. As such, we suggest
that the lower reliability in functional metrics should not preclude them
as individually and clinically meaningful measurements. When our re-
sults and those in the literature are taken together, ICC and clustering
approaches provide distinct and potentially complementary metrics:
ICC precisely assesses how similar a data series is across points, making
it a good measure of reliability, while clustering assesses differences
and similarities across individuals, making it useful for identification
and classification even in cases where ICC may not be particularly high.
It is also worth noting the utility of multivariate ICA approaches
(Cannon et al., 2014; Noble et al., 2017; Shou et al., 2013) which may
provide more accurate measure of scan-to-scan variance under some
circumstances.

We used the ARI as an objective assessment of the relationship be-
tween cluster membership and scanner or participant ID. In all cases,
ARI related to ID was significantly greater than chance, while ARI re-
lated to scanner site was not different from chance. These findings
demonstrate that accurate classification is possible based on an in-
dividual's neuroimaging data collected from different scanners across
time, particularly when sufficient corrections are applied. It is worth
noting that labels of ID by scanner and ID by year also showed sig-
nificant ARIs across several cluster solutions for all metrics. In this
specific set of scans, it is challenging to fully tease apart year and
scanner effects from IDs due to the different combinations of scanner

and time across participants. As such, these significant ARIs for ID by
scanner or ID by year may reflect the unbalanced nature of the design,
or represent true effects of unaccounted for differences among scanners
and change across years. While we attempted to address the scanner
effects by regressing scanner from our metrics of interest, more recent
multivariate approaches to scanner variance may do a better job at
removing cross-site variance (Chen et al., 2014; Fortin et al., 2017;
Mirzaalian et al., 2016).

In terms of limitations, the clustering in FC did fail on two scans that
had particularly high motion and a large number of volumes censored
during preprocessing. However, clustering was successful when as
many as 30% of the TRs were censored. This suggests that functional
connectivity remains identifying even in the presence of moderate
motion, but high motion scans (which, based on our data, might be
defined by scans with around 1/3 of TRs rejected) should be excluded
from further analysis. The use of repeated multi-site scans can provide a
more objective assessment for defining thresholds for rejecting data
from a study. We also focused on whole-brain patterns of activity in our
clustering approach, which may have obscured regionally specific
scanner effects which may be particularly important for functional lo-
calization studies. Relatedly, our F-test for scanner effects considered
overall FC (as opposed to mass univariate testing of all edges), and thus
may not reveal regional variations of FC which could influence com-
parisons between participants.
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