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ABSTRACT

BACKGROUND: Recent advances in techniques using functional magnetic resonance imaging data demonstrate
individually specific variation in brain architecture in healthy individuals. To our knowledge, the effects of individually
specific variation in complex brain disorders have not been previously reported.

METHODS: We developed a novel approach (Personalized Intrinsic Network Topography, PINT) for localizing indi-
vidually specific resting-state networks using conventional resting-state functional magnetic resonance imaging
scans. Using cross-sectional data from participants with autism spectrum disorder (ASD; n = 393) and typically
developing (TD) control participants (n = 496) across 15 sites, we tested: 1) effect of diagnosis and age on the
variability of intrinsic network locations and 2) whether prior findings of functional connectivity differences in
persons with ASD compared with TD persons remain after PINT application.

RESULTS: We found greater variability in the spatial locations of resting-state networks within individuals with ASD
compared with those in TD individuals. For TD persons, variability decreased from childhood into adulthood and
increased in late life, following a U-shaped pattern that was not present in those with ASD. Comparison of
intrinsic connectivity between groups revealed that the application of PINT decreased the number of
hypoconnected regions in ASD.

CONCLUSIONS: Our results provide a new framework for measuring altered brain functioning in neurodevelopmental
disorders that may have implications for tracking developmental course, phenotypic heterogeneity, and ultimately
treatment response. We underscore the importance of accounting for individual variation in the study of complex
brain disorders.
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Disease heterogeneity has been a major obstacle in the study of
neurodevelopmental disorders. Autism spectrum disorder (ASD)
is a lifelong complex neurodevelopmental disorder affecting 1%
of the population (1), and it has been characterized, using neu-
roimaging, neuropathology, and other investigative techniques,
by both hyperconnectivity and hypoconnectivity. Such hetero-
geneity is often attributed to different disease subtypes, IQ, age
range, sex or gender, or treatment effects or magnetic resonance
imaging scanner differences. However, variability among in-
dividuals is a topic of emerging interest that may have broad im-
plications for our understanding of neurodevelopmental disorders
such as ASD and ultimately for guiding approaches to treatment.

Each human being may possess his or her own unique
intrinsic neural topography (2). Individually specific topography
can be measured reproducibly in healthy individuals using
intrinsic connectivity (3—-6). These emerging techniques offer a
capacity for stronger alignment of functional signals across

individuals, which may ultimately enhance the possibility of
treatment translation. Within the ASD literature, at the individ-
ual level, Hahamy and colleagues (7) found greater spatial
variability of interhemispheric connectivity in approximately 80
ASD cases compared with 80 typically developing (TD) con-
trols, raising the question of whether such increased variability
exists within specific brain networks. Further, it raises several
questions: 1) how does individually specific topography
change in atypical versus typical development (i.e., with age),
and 2) what does the presence of individually specific topog-
raphy mean for interpretation of group-based findings in ASD
and other neurodevelopmental disorders that are reported in
the literature?

To address these questions, we developed an iterative
algorithm, Personalized Intrinsic Network Topography (PINT),
and made it publicly available. For each participant in a data-
set, the PINT algorithm shifts the locations of so-called
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template regions of interest (ROIs) to a nearby cortical location,
or “personalized” ROI, that maximizes the correlation of the
ROI with the rest of the ROIs from its network. Here, we applied
the PINT algorithm to resting-state functional magnetic reso-
nance imaging (fMRI) data in a large sample from the Autism
Brain Imaging Data Exchange | (ABIDE I) dataset (8). We first
tested the stability and reliability of intrinsic network identifi-
cation using PINT in the same participants over time with the
longitudinal subsample of the ABIDE | dataset (n = 31, from
two sites) as well as additional TD longitudinal samples from
the Consortium for Reliability and Reproducibility (n = 202
across three sites) (9). We then proceeded to investigate the
following main questions using ABIDE | cross-sectional data
from participants with ASD (n = 393) and TD control partici-
pants (n = 496) across 15 sites: 1) is variability of intrinsic
networks increased in ASD cases compared with TD con-
trols, thus acting as a marker of ASD, 2) what is the effect of
age (and potentially neurodevelopment) on intrinsic network
variability, and 3) do prior findings of functional connectivity
differences in ASD cases versus TD controls remain after
PINT application?

METHODS AND MATERIALS

Datasets

We employed the publicly available ABIDE | resting-state
dataset (8) of ASD and TD participants from 17 sites. (For
details of the scanning parameters for each individual site,
see ABIDE | at http://fcon_1000.projects.nitrc.org/indi/abide/
abide_l.html). Data from the Oregon Health and Science Uni-
versity site were not included because the shorter duration of
the resting-state scans was not suitable for the FMRIB Soft-
ware Library independent component analysis—based denois-
ing software FIX (see the Preprocessing Pipeline subsection).
Data from the Stanford site were excluded because of the poor
quality of the anatomical images, leading to a poor perfor-
mance of our FreeSurfer (https://surfer.nmr.mgh.harvard.edu)
pipeline. Demographic criteria from participants included in our
analyses (n = 393 ASD cases, n = 496 TD controls, across 15
sites, 6-65 years of age) are described in Supplemental
Table S8.

Test-retest performance and longitudinal stability of the
PINT algorithm was tested using three datasets of TD in-
dividuals obtained from the Consortium for Reliability and
Reproducibility (http://fcon_1000.projects.nitrc.org/indi/CoRR/
html), of similar age and scan parameters as those of ABIDE I:
New York University dataset NYU_2 (https://doi.org/10.15387/
fcp_indi.corr.nyu2; 8-55 years of age, n = 187 retested same
session, n = 62 with 6 months of follow-up); University of Utah
Health Care dataset Utah_1 (https://doi.org/10.15387/fcp_indi.
corr.utah1; n = 26, 8-38 years of age, scanned 2 years apart,
with a repeated scan in the second session); and University of
Pittsburgh School of Medicine dataset UPSM (https://doi.org/
10.15387/fcp_indi.corr.upsm1; n = 100, 10-20 years of age,
scanned 2 years apart). Additionally, the longitudinal stability of
the PINT algorithm was tested in the ABIDE longitudinal
sample (http://fcon_1000.projects.nitrc.org/indi/abide/abide_lI.
html), a release of ASD and TD participants’ 2-year follow-up
scans from the University of California-Los Angeles (n = 21,
10-13 years of age) and the University of Pittsburgh
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School of Medicine (n = 17, 9-17 years of age). Scanning
parameters and participant demographics are summarized in
the Supplement.

Preprocessing Pipeline

Magnetic resonance images were preprocessed using a
workflow that is described in the Preprocessing Pipeline sec-
tion of the Supplement and was adapted from the Human
Connectome Project Minimal Processing Pipeline (10) to reg-
ister data into a combined volume and cortical surface-based
analysis format (cifti format in “MNINonLinear-fsaverage_
LR32” space). Adapted scripts are available at https://github.
com/edickie/ciftify. The cortical surfaces were defined using
FreeSurfer's recon-all pipeline (version 5.3). Resting-state
scans were preprocessed using a combination of AFNI and
FSL tools for despiking, slice timing, motion correction,
and independent component analysis-based data-cleaning
using FIX. Quality assurance metrics for the resting state
scans were assessed using the Quality Assurance Pipeline
(https://github.com/preprocessed-connectomes-project/quality-
assessment-protocol, accessed July 15, 2016). After scans of
low quality were excluded (see Supplemental Methods), quality
assurance metrics from the remaining participants were trans-
formed to normality and submitted to a principal component
analysis. The top two principal components accounted for a
total of 83% of the variance in temporal scan quality (see
Supplemental Table S1 for loadings) and were included as
covariates in all subsequent analyses.

The PINT Algorithm and Template ROIs

Eighty template vertices were chosen to sample from six
resting-state networks described in Yeo et al. (11): dorsal
attention, default mode (DM), ventral attention (VA), frontopar-
ietal, sensory motor (SM), and visual. The limbic network from
the seven-network atlas was not employed because it contains
areas of high fMRI signal susceptibility. The locations of the
80 ROIs are given in Supplemental Table S2 and plotted in
Figure 1. Average seed correlation maps, shown in
Supplemental Figures S1 and S2, strongly resemble the Yeo
seven-network atlas. Therefore, we are confident that these 80
template ROIs represent a good sample of network activity.
PINT fits an individual participant’s resting connectivity matrix
to a template pattern of networks by moving the locations for
sampling ROls, iteratively, in a manner that optimizes the
within-network connectivity. The code is available at https://
github.com/edickie/ciftify; see ciftify_PINT_vertices. During
each iteration, for each ROI, PINT calculates the partial
correlation of each vertex within a 6-mm search radius of a
start vertex, and the other ROIs from the same network, and
then moves the ROI’s position to the vertex of highest partial
correlation (see depiction in Figure 1). Details of the algo-
rithm’s performance in the ABIDE | sample are given in the
Supplement. An evaluation of PINT as a function of internal
algorithm parameters is reported in the Supplement.

Statistical Analyses

Test-retest reliability and longitudinal stability were measured
by comparing the distance (measured on the average surface
of the Human Connectome Project 900 Subjects release at
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Figure 1. Schematic of the Personalized Intrinsic Network Topography (PINT) method. (A) PINT starts with a template set of regions of interest (ROIs)
selected from the atlas of Yeo et al. (11). (B) Template (input) and (C) personalized (output) correlation matrices from a representative subject. (D) PINT starts by
calculating average mean time series from circular ROIs of 6-mm radius around 80 central template vertices. In this depiction, we zoom in on an ROI from the
frontoparietal network. The correlation of a vertex time series (dashed black line) is calculated with the frontoparietal network time series (orange line) after the
time series of the five other networks are regressed from both. Then, the center of the ROl is moved to the vertex of maximal partial correlation (the direction of
movement is show using the black arrow). (E) After all 80 ROIs have been moved, the network time series are updated and the algorithm repeats around the
new vertex locations. (F) The algorithm iterates until all 80 ROls are centered about a vertex of highest partial correlation (represented by the black circle). DA,
dorsal attention network; DM, default mode network; FP, frontoparietal network; SM, sensory motor network; VA, ventral attention network; VI, visual network.
(Note: The limbic network was not included, because it contains many areas of high functional magnetic resonance imaging signal susceptibility.)

midsurface) between the baseline and follow-up personalized
ROl locations. Within-subject distance was compared with the
mean cross-subjects distance via paired t tests.

Individual variability in intrinsic network locations was
calculated as the distance from the starting template vertex
location to each participant’s personalized vertex location,
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measured on the Average Surface of the Human Connectome
Project 900 Subjects release. This distance was averaged
across all 80 ROIs for each participant to build a total-brain
score and within each network to produce network-level
scores. We used linear regression to test for effects of diag-
nosis and age-by-diagnosis interactions on average distance.
All linear models included covariates of age, sex (per ABIDE
data dictionary), I1Q, site, cortical surface area, and the top two
principal components of scan quality metrics. To identify
nonlinear age effects, the total-brain score was regressed
against the same model with a quadratic age term introduced
and the same covariates. To confirm the nature of age effects
in those =30 years of age, both the nonlinear (quadratic) and
linear models were repeated after excluding participants (37
ASD cases, 33 TD controls >30 years of age). Network-level
analyses were corrected for multiple comparisons using false
discovery rate.

To visualize personalized ROI locations within groups of
people, we created vertexwise probability maps. A difference
map was created by subtracting the probability map of the
ASD cases from that of TD controls. This map was thresholded
using permutation tests. We permuted group membership to
create 2000 “random” group difference maps. Then, at each
vertex, we took difference values between the 2.5th and 97.5th
percentiles as our cutoff for significance (o = .05, two tailed). A
similar process was used to create difference maps between
children and young adults.

Edges from Z-transformed correlation matrices calculated
from time series of pre-PINT adjustment template ROIs and
post-PINT personalized ROIs were tested for a difference be-
tween ASD and TD groups, in a linear regression with cova-
riates of age, sex, IQ, scanning site, and the two top principal
components of scan quality measures, using linear regression.
False discovery rate was used to correct for multiple com-
parisons. Follow-up analyses, testing for associations of
edgewise connectivity with Autism Diagnostic Observation
Schedule (ADOS) scores and full-scale 1Q values, were con-
ducted using those participants with ASD who had data for
these scales using the same covariates (age, sex, site, and the
top two principal components of scan quality measures).

The code for all preprocessing and statistical analyses is
available at https://bitbucket.org/edickie/abide-pint.

RESULTS

Test-Retest Reliability and Longitudinal Stability of
the PINT Algorithm

In all test-retest and longitudinal datasets tested, we found that
the distance, measured on the surface, between personalized
ROI locations was lower when measured via within-subject
method than when measured via the cross-subject method
(see Figure 2). Note that the within-subject versus cross-subject
distance effects were greater in datasets where both baseline
and follow-up scans were acquired on the same day than in
those tested months or years apart. This finding supports
suggestions that some reorganization of intrinsic connectivity
occurs across development (12,13). This within- versus cross-
subject difference was significant for all six resting-state net-
works tested (see Supplemental Figure S9) and irrespective of
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ASD or TD group membership (see Supplemental Table S7). We
also found greater within-subject than cross-subject similarity in
the resulting correlation matrices (described in the Supplement
and Supplemental Table S8).

Application of PINT Increases Long-Range Within-
Network Correlations

The personalized ROI centers were within an average of 7.70 mm
of the template vertex locations (see Supplemental Figure S3 for
detailed probabilistic maps). Vertex displacement was not corre-
lated with in-scanner head motion (see Supplemental Figure S4).
The average (n = 889) Z-transformed correlation values are shown
in Supplemental Figure S5. Within resting-state network func-
tional connectivity increased substantially across the sample of
ASD and TD participants when personalized ROI locations were
used (template ROl mean correlation [Z] = 0.34, SD = 0.12;
personalized ROl mean = 0.52, SD = 0.13; see Supplemental
Table S4). In addition, regional spatial heterogeneity of long-
range connectivity was decreased in the personalized ROls
(paired tggs = —22.13, p < 107 '6; see Supplemental Figure S6).

Intrinsic Network Locations Are More Variable in
ASD Cases Than in TD Controls

We found that individual subject distances to the template ROI
center were greater in the ASD group than in the TD group
(tss7 = 3.05, p = .002). Additional significant predictors to the
model included site (F14,867 = 14.3, p < .001), participants’ total
surface area (tgs7 = —4.73, p < .001), and (marginally) the first
principal component of temporal scan quality metrics (tgg7 =
1.92, p = .06).

Intrinsic Network Location Variability Follows a
U-Shaped Curve Pattern Across the Lifespan in the
TD Group, but Shows No Relationship With Age in
the ASD Group

Within the TD group, the mean distance from the template ROI
center to personalized ROI center (across the 80 ROIs tested)
was negatively associated with age (t475 = —3.17, p = .002).
Under further exploration, the effect of age in the TD group was
best described by a quadratic curve, where the total distance
decreased from childhood to adulthood but then increased
again after 30 years of age (see Supplemental Figure S7)
(quadratic term t474 = 3.07, p = .002). If only those TD partic-
ipants aged 30 and below are included, the age effect is best
modeled as a linear decline (ts4p = —4.26, p = .000025).
Individuals with ASD showed no such age effect: neither a
linear decline (tz71 = —1.49, p = .14) nor quadratic curve (tz71 =
0.31, p = .75) was observed. However, a significant age-by-
diagnosis effect was found (F2,ge4 = 3.19, p = .04).

Network-Level Analysis of Intrinsic Network
Locations

Given the age effects described above in TD participants, we
assessed each of the six functional networks separately in
participants <30 years of age (see Table 1). We found an effect
of diagnosis and a diagnosis-by-age interaction in the VA and
dorsal attention networks (see Table 1 and Figure 3A). For the
DM network, an effect of age was present (see Table 1). Spatial
variability in DM ROls decreased with age (ASD group:
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Figure 2. Test-retest and longitudinal stability of Personalized Intrinsic Network Topography (PINT) using Autism Brain Imaging Data Exchange (ABIDE)
longitudinal and Consortium for Reliability and Reproducibility (CoRR) datasets. (A) Measurement of within-subject and cross-subject distance for a
personalized frontoparietal network region of interest is depicted for two representative longitudinal participants. The orange outline represents the fronto-
parietal network as defined by the atlas of Yeo et al. (11). Template vertex locations are shown in black for reference. (B) The locations of PINT personalized
vertices show consistency over time. Gray violin plots show the distribution of cross-subject distances (averaging across 80 regions of interest) for the
University of California—Los Angeles (UCLA) site (left, n = 14) and University of Pittsburgh School of Medicine (UPSM) site (right, n = 17). Box plot and points, for
the cross-subject measure, show the mean distance of each individual’s baseline scan to all other individuals’ follow-up scans. This measure is compared with
the distance of each individual’s baseline scan to his or her own follow-up scan (within subject distance). (C) This effect replicated in test-retest and longi-
tudinal comparisons in three samples of typically developing individuals obtained from the Consortium for Reliability and Reproducibility (left to right): NYU_2
test-retest, n = 135 scanned same session; NYU_2 longitudinal, n = 53 scanned approximately 6 months apart); Utah_1 test retest; n = 23, scanned same
session; Utah_2 longitudinal, n = 16, scanned approximately 2 years apart; UPSM longitudinal, n = 44, scanned approximately 2 years apart. NYU, New York
University; SUB1 T1, subject 1, time 1; SUB 1 T2, subject 1, time 2; SUB2 T1, subject 2, time 1; SUB2 T2, subject 2, time 2; UTAH, University of Utah School of
Medicine.

r=-0.11, p = .05; TD group: r = —.10, p = .03) (Figure 3B).
There was no effect of ASD diagnosis. However, an explor-
atory analysis in individuals with ASD revealed a weak trend for
an association between spatial variability in DM ROIls and ASD
symptom severity (ADOS scores: toy; = 1.71, p = .09
uncorrected).

Application of PINT (i.e., Adjusting Individual
Differences in Spatial Location) Decreases the Long-
Range Hypoconnectivity Otherwise Observed in ASD

Before PINT correction, 214 edges showed significantly lower
correlation strength in the ASD group compared with the TD
group (Figure 4A). This finding is in high agreement with
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previous publications of cortical hypoconnectivity in ASD (8). In
contrast, after we adjusted for differences in intrinsic network
topography, 80 connections showed lower correlations in ASD
versus TD groups, and four connections showed higher cor-
relation in ASD versus TD groups (Figure 4B). This finding
provides direct support for our hypothesis that some of the
cortical hypoconnectivity previously reported in ASD is a
product of greater heterogeneity in the spatial locations of the
ROls in the ASD versus that in the TD group.

Effects of Clinical Scores After PINT Application

ADOS total score was negatively correlated with connectivity
between the ventromedial prefrontal cortex ROl of the DM
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Table 1. Effects of Age and Autism Spectrum Disorder
Diagnosis on Personalized Vertex Locations

Age-by-Diagnosis

Network Age Effect Diagnosis Effect Interaction
SM - = —1.75, p = .080 -
\Y - - t=-1.89, p =.060
DM t=-287, - -

p < .001%
FP - - -
DA - t=-273, p =.007" t=-2.06, p =.040

VA - = —2.76, p = .006% = -2.02, p =.040
All ROls - t=-3.23, p =.001 t=-249 p=.013

Additional model covariates: Site, sex, full-scale 1Q, total cortical
surface area, top two principal components of functional magnetic
resonance imaging scan quality. Residual degrees of freedom = 886.

DA, dorsal attention network; DM, default mode network;
FP, frontoparietal network; ROI, region of interest; SM, sensory motor
network; VA, ventral attention network; VI, visual network.

4Significant after false discovery rate correction across 6 networks.

network and the frontal pole ROI of the VA network (ADOS total
score: t = 19.3, p = .05, false discovery rate corrected). Several
additional edges connecting the VA and DM networks showed
a similar negative correlation at a lower threshold (p < .001,
uncorrected) (see Supplemental Table S5 and Supplemental
Figure S8).

DISCUSSION

We found that the spatial organization of the brain’s intrinsic
functional networks is more variable in ASD cases compared
with that in TD controls, most prominently in the dorsal and
VA networks. Application of our novel PINT algorithm to a
conventional group-based analysis of functional connectiv-
ity resulted in a reevaluation of many of the previously
shown findings of “hypoconnectivity” in the ASD literature.
Intrinsic network location variability showed a nonlinear
U-shaped relationship with age across the lifespan in TD
participants, but there was no relationship with age in those
with ASD. Our findings provide a new understanding of brain
network organization and heterogeneity in people with ASD
and TD individuals across the developmental lifespan while
reconfiguring our understanding of prior findings in the
literature.

Our most important finding was greater variability of spatial
organization in cortical resting-state networks in the ASD pop-
ulation than in TD control participants. Greater heterogeneity of
cortical organization in ASD has been reported recently in spatial
patterns of homotopic connectivity (7), cortical organization (14),
and altered functional organization of the motor cortex (15,16).
The increased variability in functional organization observed in
ASD aligns with the broad clinical and genetic heterogeneity
associated with altered neurodevelopmental trajectories (17).
Recent data estimate that between 400 and 1000 genes are
involved in illness susceptibility in ASD (17), with no one genetic
polymorphism predicting >1% of ASD cases (18). In addition,
epigenetic markers have also been proposed that contribute to
both risk for and heterogeneity within ASD (19,20). The functions
of many of these genes appear to converge on molecular
pathways for early cortical patterning (21,22). However, in
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Figure 3. (A) Medial right hemisphere view of diagnosis effect on
personalized region of interest (ROI) locations in the ventral attention
network. The probability map of the personalized ROI location (i.e., one
where the value at each vertex represents the proportion of participants in
the sample, pooling results from individuals with autism spectrum disorder
[ASD] and typically developing [TD] individuals, whose 6-mm ROl encom-
passes that location) is plotted in grayscale. The template vertex locations
are plotted as black dots. The overlaid colors show areas where a significant
effect of diagnosis was observed (warm colors, effects in the TD group are
greater than effects in the ASD group; cool colors, effects in the ASD group
are greater than effects in the TD group). (B) Lateral left hemisphere view of
age effect on personalized ROI locations in the default mode network. The
probability map of the personalized ROI location (all participants =30 years
of age) is plotted in grayscale. The template vertex locations are plotted as
the black dot. The overlaid colors show areas where a significant effect of
age group was observed (warm colors: effects in children are greater than
effects in adults; cool colors: effects in adults are greater than effects in
children). Children were defined as those <12 years of age (n = 183); adults
were defined as between 18 and 30 years of age, inclusive (n = 251).

mouse models, each of the top susceptibility genes for autism
has diverse impacts on brain structure (23). Our findings can be
interpreted in the context of theories of autism pathology, which
posit an early neurodevelopmental insult (22,24-26). It is
possible that in the presence of an early neuropathological
process, the especially plastic developing brain can maintain the
function most critically developing at the time by reappropriating
tissue near an area that has become damaged or disconnected.
In the case of ASD, with a wide heterogeneity of genetic (27) and
environmental influences (28,29) at play, various neuropatho-
logical factors could manifest in different cortical locations
across individuals (24). A direct consequence could be greater
heterogeneity of brain topography.

Group-level differences captured after a functional-based
realignment are more likely to reflect “true” disconnect be-
tween specific biological targets. In this investigation, after
individual differences in network locations were accounted for,
within-network connectivity for the SM and DM networks
persisted as robust potential neural markers of ASD. Activity
within the SM network (8,15,16) as well as connectivity
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Figure 4. (A) Locations (left) and chord diagram of network composition
(right) for the 214 edges showing significant hypoconnectivity in autism
spectrum disorder calculated from the template regions of interest (before
Personalized Intrinsic Network Topography [PINT]). (B) After PINT, the
number of significant hypoconnected edges (blue) is reduced and four
hyperconnected (orange) edges are seen. For the chord diagrams, the width
of the chord represents the number of significant edges and the color of the
chord represents the mean effect size for those significant edges. DA, dorsal
attention network; DM, default mode network; FP, frontoparietal network; L,
left; R, right; SM, sensory motor network; VA, ventral attention network; VI,
visual network.

between the SM areas and the subcortex (8,30) has been
consistently reported in the ASD literature. DM network con-
nectivity decreases have also been frequently reported in the
ASD literature (8,31) and have been of great interest because
of the proposed role of this network in mentalizing, a core
behavioral deficit in ASD (32). Following PINT, four connec-
tions between the VA network and the DM network showed
newly significant hyperconnectivity in ASD cases compared
with that in TD controls. Other connections between the DM
network and the VA network were hypoconnected, and they
negatively correlated with ASD symptom severity. Given the
later maturation of the DM network, it might generally be less
susceptible to spatial heterogeneity effects related to ASD or it
might not develop more complex relationships such as
between-network connectivity to attention network connec-
tivity in ASD; therefore, it requires further exploration.

A key implication of our results is that consideration of
increased individual variability among individuals with ASD
might be required for future imaging and postmortem brain
analysis. It has been previously proposed that some of the
hypoconnectivity measured in ASD was not a “true” drop in
connection strength between two ROls but rather attributable
to greater heterogeneity across individuals in the locations of
the functional areas (7). Our findings confirm this contention on
a wide scale (i.e., across brain functional networks), although
some networks, namely the dorsal and VA networks, were
more susceptible than others. This finding has implications for
the emerging view of salience network function as a marker of
ASD pathology (33), as the salience network is encompassed
by the VA network. Recently, Uddin and colleagues (34) found
that maps of the independent component analysis component
for the salience network could be used to classify ASD and TD
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individuals. When we conducted the conventional functional
connectivity comparison between ASD and TD participants,
while accounting for the PINT correction, the finding of cortical
hypoconnectivity with these ROIs in ASD was reduced.
Therefore, the mechanism by which the salience network
function is affected by ASD is not through disconnection but
through idiosyncratic connection.

Our findings also revealed an effect of age, whereby in TD
cases, we observed that the distance of individuals’ person-
alized ROI locations from the template vertex location
decrease from childhood to adulthood. With increasing age,
the organization of resting-state networks look more like the
template (or atlas) organization in TD controls. In contrast,
variability tends to increase in later life in the TD group, dis-
playing a retrogenesis-like effect. However, the smaller sample
size of older adults examined here limits our ability to make
strong conclusions in this regard. The age trajectory that we
found in TD individuals is similar to those observed for other
measures of brain connectivity across development, including
white matter volume (12) and white matter microstructure
(13,35,36). Critically, recent evidence links these structural
changes to the emergence of young adult resting-state
network dynamics. Coordinated patterns of cortical thinning
in adolescence show spatial correspondence to the location of
functional networks (37). Moreover, adolescent changes in
white matter microstructure support a greater diversity of
functional network dynamics (38). In contrast to the between-
subject variability in the spatial domain measured here,
within-subject variability in the temporal domain shows the
opposite pattern developmentally: temporal variability of
electroencephalography, magnetoencephalography, and fMRI
time-series increases from childhood to adolescence (39,40)
and decreases in late life (41). In our study, the age effects
we observed were absent in the ASD population, consistent
with an altered neurodevelopmental trajectory.

A recent paper identified 260 functional cortical areas using
the multimodal combination of all imaging data from the
Human Connectome Project, including 2 hours of resting-state
fMRI (4). We argue that 80 ROIs from six networks is a
reasonable resolution for analysis given that for some sites, as
little as 5 minutes of resting fMRI data are available and some
motion during the scan is unavoidable. Future development is
required to adapt and validate PINT for additional ROI defini-
tions. We are reassured of the validity of our current approach.
given the similarity of results observed across runs in our test—
retest and longitudinal samples. This longitudinal retest reli-
ability was observed both for the personalized ROI locations
and for the resulting correlation matrices. However, it is
possible that ROIs we identify here may actually be multiple
subregions belonging to the same one of six larger-scale
networks (42) and that these subregions may contribute
differently to ASD pathology. It is indeed possible that failing to
dynamically switch “states” between these subnetworks such
that one subnetwork was evoked more than another may
appear as a shift in the larger network’s location. The PINT
algorithm identifies the center of functional areas of interest. It
is possible that some neural markers of ASD pathology may
reside not at the center of functional areas but in cortical areas
between these centers. These template locations of resting
state function were defined from young adult resting-state data
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(11). Therefore, it is possible that this template organization of
resting-state networks is most applicable to the young adult
age range.

The current ABIDE data release has a relatively small number
of female participants. This is expected, as more males are
affected by ASD. In this analysis, we were underpowered to
investigate sex- or gender-based differences in network orga-
nization, which may manifest differently in male versus female
individuals with ASD (43,44). We were also unable to examine
the effects of comorbidity, time of day, or substance abuse
because of variability across sites in the nature of the clinical
assessment. Additionally, the full-scale 1Q range within this
population was mostly reflective of individuals with average in-
telligence (IQ < 80), and while 1Q was included as a covariate in
all analyses, we were unable to examine specific associations.

Conclusions

We show that the identification of personalized functional
network organization is possible using conventional resting-
state fMRI scans from multiple scanners. These results are
reliable over time, suggesting that they indicate a trait-like
marker of brain organization. We provide evidence that the
spatial organization of cortical resting-state networks is more
variable in people affected by ASD. Furthermore, ASD partic-
ipants did not demonstrate the age-related decreases in vari-
ability observed in TD controls. Finally, our results indicated
that many findings of widespread hypoconnectivity in ASD are
lost following application of PINT, while other new findings
emerge. Taken together, these results underscore the impor-
tance of accounting for individual variability in the study of
complex brain disorders and provide a window into neurobi-
ological heterogeneity among individuals that may be relevant
for treatment innovation.
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